97 research outputs found

    Numerical Analysis of Various Heat Countermeasures: Effects on Energy Consumption and Indoor Thermal Comfort in Densely Built Wooden House Area

    Get PDF
    Densely built areas with poor thermal insulation suffer from high thermal environmental risks and generally consume high energy in summer. Determining the relationship between density and energy consumption is necessary, particularly when implementing urban heat island (UHI) countermeasures. This study evaluated the effects of density and UHI countermeasures on the energy consumption and indoor thermal comfort of a detached house in a typical densely built wooden house area in Yokohama City, Japan. Three densities and six countermeasures were considered. Annual hourly simulations based on the SCIENCE-Vent thermal environment simulation model yielded the following results: in densely built wooden house areas, the energy consumption and thermal discomfort increased with density. The green roof yielded the largest energy savings in the cooling and heating seasons, demonstrating the highest annual energy savings with 5.7%. Density had little impact on rooftop countermeasures, but the effect of the high-reflectance walls increased with density, and the reduction in annual energy consumption (air conditioning and lighting) is 2.6%, 3.0%, 3.6% in 37%, 47%, and 59% density cases, respectively. The impact of thermal countermeasures on indoor thermal comfort varied according to the thermal control mechanism

    Land-use Change by Urbanization of Hanoi city : After the Adoption of Doi-Moi Policy

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    A Study of OVAL Scroll Compressor for Capacity Increase

    Get PDF
    In recent years, there has been demand for a large-capacity scroll compressor to reduce cost and improve performance. To increase the capacity of the scroll compressor, technology to expand the stroke volume without increasing the shell size is required. To expand the stroke volume, expanding the wrap height in the axial direction is most effective. However, the higher wrap height raises the stress on the wrap and causes the orbiting scroll to overturn. So, we started to study a new shape of wrap to expand the stroke volume in the horizontal direction. The base plate of an orbiting scroll is usually circular. However, the trajectory of the fixed scroll on the base plate of the orbiting scroll is not circular, so wasted space that is not useful for compression exists on the base plate. We devised an oval wrap to make the trajectory of the fixed scroll on the base plate circular and reduce this space. The radius of basic circle was constant regardless of the involute angle in the conventional wrap. On the other hand, we can make the wrap shape “oval” by changing the radius of the basic circle sinusoidally (every 180 degrees). In this conference, we will present the geometric theory of our new oval wrap and the experimental result of the prototype. The results are follows: (1) It is possible to increase the stroke volume by more than 20% with the oval wrap. (2) A prototype with the oval wrap operates stably, and compressor efficiency is equivalent to the conventional wrap

    Induction of DNA Methylation by Artificial piRNA Production in Male Germ Cells

    Get PDF
    SummaryGlobal DNA demethylation and subsequent de novo DNA methylation take place in mammalian male embryonic germ cells [1–3]. P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), which are germline-specific small RNAs, have been postulated to be critically important for de novo DNA methylation of retrotransposon genes, and many proteins, including PIWI family proteins, play pivotal roles in this process [4–6]. In the embryonic mouse testis, two mouse PIWI proteins, mouse PIWI-like (MILI) and mouse PIWI2 (MIWI2), are involved in the biogenesis of piRNAs through the so-called ping-pong amplification cycle [7–10], and long single-stranded RNAs transcribed from the gene regions of piRNA clusters have been proposed to be the initial material [11–16]. However, it remains unclear whether transcription from the piRNA clusters is required for the biogenesis of piRNAs. To answer this question, we developed a novel artificial piRNA production system by simple expression of sense and antisense EGFP mRNAs in embryonic male germ cells in the piRNA biogenesis phase. EGFP expression was silenced by piRNA-dependent DNA methylation, indicating that concomitant expression of sense and antisense RNA transcripts is necessary and sufficient for piRNA production and subsequent piRNA-dependent gene silencing. In addition, we demonstrated that this artificial piRNA induction paradigm could be applied to an endogenous gene essential for spermatogenesis, DNMT3L [3, 17, 18]. This study not only provides novel insights into the molecular mechanisms of piRNA production, but also presents an innovative strategy for inducing epigenetic modification in germ cells

    High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis

    Get PDF
    AbstractAimsApoptosis of cardiomyocytes is thought to account for doxorubicin cardiotoxicity as it contributes to loss of myocardial tissue and contractile dysfunction. Given that high-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein capable of inhibiting apoptosis, we aimed to clarify the role of HMGB1 in heat shock protein beta 1 (HSPB1) expression during doxorubicin-induced cardiomyopathy.Methods and resultsMitochondrial damage, cardiomyocyte apoptosis, and cardiac dysfunction after doxorubicin administration were significantly attenuated in mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) compared with wild type (WT) -mice. HSPB1 levels after doxorubicin administration were significantly higher in HMGB1-Tg mice than in WT mice. Transfection with HMGB1 increased the expression of HSPB1 at both the protein and mRNA levels, and HMGB1 inhibited mitochondrial dysfunction and apoptosis after exposure of cardiomyocytes to doxorubicin. HSPB1 silencing abrogated the inhibitory effect of HMGB1 on cardiomyocyte apoptosis. Doxorubicin increased the binding of HMGB1 to heat shock factor 2 and enhanced heat shock element promoter activity. Moreover, HMGB1 overexpression greatly enhanced heat shock element promoter activity. Silencing of heat shock factor 2 attenuated HMGB1-dependent HSPB1 expression and abrogated the ability of HMGB1 to suppress cleaved caspase-3 accumulation after doxorubicin stimulation.ConclusionsWe report the first in vivo and in vitro evidence that cardiac HMGB1 increases HSPB1 expression and attenuates cardiomyocyte apoptosis associated with doxorubicin-induced cardiomyopathy. Cardiac HMGB1 increases HSPB1 expression in cardiomyocytes in a heat shock factor 2-dependent manner

    Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice.

    Get PDF
    The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells

    Effect of Urban Heat Island and Global Warming Countermeasures on Heat Release and Carbon Dioxide Emissions from a Detached House

    No full text
    Urban air temperature rises induced by the urban heat island (UHIE) effect or by global warming (GW) can be beneficial in winter but detrimental in summer. The SCIENCE-Outdoor model was used to simulate changes to sensible heat release and CO2 emissions from buildings yielded by four UHIE countermeasures and five GW countermeasures. This model can evaluate the thermal condition of building envelope surfaces, both inside and outside. The results showed that water-consuming UHIE countermeasures such as evaporative space cooling and roof water showering provided positive effects (decreasing sensible heat release and CO2 emissions related to space conditioning) in summer. Additionally, they had no negative (unwanted cooling) effects in winter since they can be turned off in the heating season. Roof greening can provide the greatest space- conditioning CO2 emissions reductions among four UHIE countermeasures, and it reduces the amount of heat release slightly in the heating season. Since the effect on reducing carbon dioxide (CO2) emissions by UHIE countermeasures is not very significant, it is desirable to introduce GW countermeasures in order to reduce CO2 emissions. The significance of this study is that it constructed the new simulation model SCIENCE-Outdoor and applied it to show the influence of countermeasures upon both heat release and CO2 emissions

    Climate analysis for urban planning in Osaka

    No full text

    Research on Power Consumption Calculation Method for Refrigerating and Space Conditioning Considering Heat Balance in a Grocery store

    No full text
    In grocery stores, spatial coordination and refrigerated display cases interact, making it difficult to study energy conservation through architectural ideas. The purpose of this research is to find the indoor enthalpy from the leaked heat of the display case and the space conditioning load, and to devise a method to calculate the energy of the store by combining the space conditioning load calculation and the refrigeration load calculation. In this study, we devised the following three points. 1. Store cooling load prediction method and power consumption calculation method using display case cooling load characteristics. 2. A generalized model for grocery store vertical temperature gradient using CFD analysis results. 3. Energy consumption calculation method considering the balance of the three loads of cooling, building and space conditioning. Then, we confirmed the validity by comparing with the measured values, and performed simulations under various conditions
    corecore