26 research outputs found

    Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases

    No full text
    The single-stranded DNA-binding proteins (SSBs) are vital to virtually all DNA functions. Here, we report on the biochemical properties of SSB from a fast-growing mycobacteria, Mycobacterium smegmatis, and the interaction of the homotetrameric SSBs with uracil DNA glycosylases (UDGs) from M. smegmatis (Msm), Mycobacterium tuberculosis (Mtu) and Escherichia coli (Eco). UDG is a crucial DNA repair enzyme, which removes the promutagenic uracil residues. MsmSSB stimulates activity of the homologous MsmUDG and of the heterologous Mtu-, and Eco-UDGs. On the contrary, while the MtuSSB stimulates the MtuUDG, it inhibits the other two UDGs. Although the MsmSSB shares 84% identity with MtuSSB, the two are strikingly different, in that MsmSSB contains a glycine-rich segment (11 out of 13 residues) in the spacer connecting the N-terminal DNA-binding domain with the C-terminal acidic tail. While the DNA-binding properties of MsmSSB, such as its affinity to oligomeric DNA, requirement of minimum size DNA and the modes of interaction are indistinguishable from those of Eco-, and Mtu-SSBs, it is unclear if the glycine-rich segment confers structural advantage to MsmSSB, responsible for its stimulatory effect on all UDGs tested. More importantly, by using a small polypeptide inhibitor of UDGs, and the deletion mutants of SSBs, we suggest that the C-terminal acidic tail of the SSBs interacts within the DNA-binding groove of the UDGs, and propose a role for SSBs in the recruitment of UDGs to the damaged DNA

    Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate

    No full text
    Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised ∼1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the –1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the –5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme–substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis

    Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases

    No full text
    Uracil, a promutagenic base, appears in DNA either by deamination of cytosine or by incorporation of dUMP by DNA polymerases. This unconventional base in DNA is removed by uracil-DNA glycosylase (UDG). Interestingly, a bacteriophage-encoded short polypeptide, UDG inhibitor (Ugi), specifically inhibits UDGs by forming a tight complex. Three-dimensional structures of the complexes of Ugi with UDGs from Escherichia coli, human and herpes simplex virus have shown that two of the structural elements in Ugi, the hydrophobic pocket and the β 1-edge, establish key interactions with UDGs. In this report the characterization of complexes of Ugi with UDGs from Mycobacterium tuberculosis, a pathogenic bacterium, and Mycobacterium smegmatis, a widely used model organism for the former, is described. Unlike the E. coli (Eco) UDG-Ugi complex, which is stable to treatment with 8 M urea, the mycobacterial UDG-Ugi complexes dissociate in 5-6 M urea. Furthermore, the Ugi from the complexes of mycobacterial UDGs can be exchanged by the DNA substrate. Interestingly, while EcoUDG sequestered Ugi into the EcoUDG-Ugi complex when incubated with mycobacterial UDG-Ugi complexes, even a large excess of mycobacterial UDGs failed to sequester Ugi from the EcoUDG-Ugi complex. However, the M. tuberculosis (Mtu) UDG-Ugi complex was seen when MtuUDG was incubated with M. smegmatis (Msm) UDG-Ugi or EcoUDG(L191G)-Ugi complexes. The reversible nature of the complexes of Ugi with mycobacterial UDGs (which naturally lack some of the structural elements important for interaction with the β 1-edge of Ugi) and with mutants of EcoUDG (which are deficient in interaction with the hydrophobic pocket of Ugi) highlights the significance of both classes of interaction in formation of UDG-Ugi complexes. Furthermore, it is shown that even though mycobacterial UDG-Ugi complexes dissociate in 5-6 M urea, Ugi is still a potent inhibitor of UDG activity in mycobacteria

    Mutational Analysis of the Uracil DNA Glycosylase Inhibitor Protein and Its Interaction with Escherichia coli Uracil DNA Glycosylase

    No full text
    Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel β\beta sheet flanked on either side by single α\alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8 M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the β1\beta 1 edge)establish key interactions with Escherichia coli UDG. The point mutations in helix α1\alpha 1 (amino acid residues 3–14) do not affect the stability of the UDG–Ugi complexes in urea. And, while the complex of the ΔN13\Delta N13 mutant with UDG is stable in only 4\sim 4 M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6 M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the β\beta strands, conferred no such phenotype. The L23R and S21P mutations (β1\beta 1 edge) at the UDG–Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG–Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells

    Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases

    No full text
    Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N-and C-terminal domains of SSBs from E. coli andMycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction withMtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed

    Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases

    No full text
    Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed

    Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases

    No full text
    Uracil, a promutagenic base, appears in DNA either by deamination of cytosine or by incorporation nof dUMP by DNA polymerases. This unconventional base in DNA is removed by uracil-DNA glycosylase (UDG). Interestingly, a bacteriophage-encoded short polypeptide, UDG inhibitor (Ugi), specifically inhibits UDGs by forming a tight complex. Three-dimensional structures of the complexes of Ugi with UDGs from Escherichia coli, human and herpes simplex virus have shown that two of the structural elements in Ugi, the hydrophobic pocket and the b1-edge, establish key interactions with UDGs. In this report the characterization of complexes of Ugi with UDGs from Mycobacterium tuberculosis, a pathogenic bacterium, and Mycobacterium smegmatis, a widely used model organism for the former, is described. Unlike the E. coli (Eco) UDG-Ugi complex, which is stable to treatment with 8 M urea, the mycobacterial UDG-Ugi complexes dissociate in 5–6 M urea. Furthermore, the Ugi from the complexes of mycobacterial UDGs can be exchanged by the DNA substrate. Interestingly, while EcoUDG sequestered Ugi into the EcoUDG-Ugi complex when incubated with mycobacterial UDG-Ugi complexes, even a large excess of mycobacterial UDGs failed to sequester Ugi from the EcoUDG-Ugi complex. However, the M. tuberculosis (Mtu) UDG-Ugi complex was seen when MtuUDG was incubated with M. smegmatis (Msm) UDG-Ugi or EcoUDG(L191G)-Ugi complexes. The reversible nature of the complexes of Ugi with mycobacterial UDGs (which naturally lack some of the structural elements important for interaction with the b1-edge of Ugi) and with mutants of EcoUDG (which are deficient in interaction with the hydrophobic pocket of Ugi) highlights the significance of both classes of interaction in formation of UDG-Ugi complexes. Furthermore, it is shown that even though mycobacterial UDG-Ugi complexes dissociate in 5–6 M urea, Ugi is still a potent inhibitor of UDG activity in mycobacteria

    A chemically induced attenuated strain of Candida albicans generates robust protective immune responses and prevents systemic candidiasis development

    No full text
    Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice

    Complex Formation with Rev1 Enhances the Proficiency of Saccharomyces cerevisiae DNA Polymerase ζ for Mismatch Extension and for Extension Opposite from DNA Lesions

    No full text
    Rev1, a Y family DNA polymerase (Pol) functions together with Polζ, a B family Pol comprised of the Rev3 catalytic subunit and Rev7 accessory subunit, in promoting translesion DNA synthesis (TLS). Extensive genetic studies with Saccharomyces cerevisiae have indicated a requirement of both Polζ and Rev1 for damage-induced mutagenesis, implicating their involvement in mutagenic TLS. Polζ is specifically adapted to promote the extension step of lesion bypass, as it proficiently extends primer termini opposite DNA lesions, and it is also a proficient extender of mismatched primer termini on undamaged DNAs. Since TLS through UV-induced lesions and various other DNA lesions does not depend upon the DNA-synthetic activity of Rev1, Rev1 must contribute to Polζ-dependent TLS in a nonenzymatic way. Here, we provide evidence for the physical association of Rev1 with Polζ and show that this binding is mediated through the C terminus of Rev1 and the polymerase domain of Rev3. Importantly, a rev1 mutant that lacks the C-terminal 72 residues which inactivate interaction with Rev3 exhibits the same high degree of UV sensitivity and defectiveness in UV-induced mutagenesis as that conferred by the rev1Δ mutation. We propose that Rev1 binding to Polζ is indispensable for the targeting of Polζ to the replication fork stalled at a DNA lesion. In addition to this structural role, Rev1 binding enhances the proficiency of Polζ for the extension of mismatched primer termini on undamaged DNAs and for the extension of primer termini opposite DNA lesions
    corecore