32 research outputs found

    Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea

    Get PDF
    Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomicsā€assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway geneā€based association mapping, genomeā€wide association study, QTL mapping and expression profiling. This identified 16 potential SNP loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea. The allelic variants were tightly linked to positively interacting QTLs regulating both enhanced PE and SYP traits as exemplified by a chlorophyll Aā€B binding proteinā€coding gene. The leaf tissueā€specific pronounced upā€regulated expression of 16 associated genes in germplasm accessions and homozygous individuals of mapping population was evident. Such combinatorial genomic strategy coupled with gene haplotypeā€specific association as well as in silico proteinā€protein interaction study delineated natural alleles and superior haplotypes from a chlorophyll Aā€B binding proteinā€coding gene and its interacting gene, Timing of CAB Expression 1, which appear to be mostā€promising candidates in modulating chickpea PE and SYP traits. These functionally pertinent molecular signatures identified have efficacy to drive markerā€assisted selection for developing PEā€enriched cultivars with high seed yield in chickpea

    CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea

    Get PDF
    Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity

    Transcriptional signatures modulating shoot apical meristem morphometric and plant architectural traits enhance yield and productivity in chickpea

    Get PDF
    Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Largeā€scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea. This study integrated a genomeā€wide association study (GWAS); quantitative trait locus (QTL)/fineā€mapping and mapā€based cloning with molecular haplotyping; transcript profiling; and proteinā€DNA interaction assays for the dissection of plant architectural traits in chickpea. These exertions delineated natural alleles and superior haplotypes from a CabHLH121 transcription factor (TF) gene within the major QTL governing PW, PH and SAM morphometric traits. A genomeā€wide proteinā€DNA interaction assay assured the direct binding of a known stem cell master regulator, CaWUS, to the WOXā€homeodomain TF binding sites of a CabHLH121 gene and its constituted haplotypes. The differential expression of CaWUS and transcriptional regulation of its target CabHLH121 gene/haplotypes were apparent, suggesting their collective role in altering SAM morphometric characteristics and plant architectural traits in the contrasting near isogenic lines (NILs). The NILs introgressed with a superior haplotype of a CabHLH121 exhibited optimal PW and desirable PH as well as enhanced yield and productivity without compromising any component of agronomic performance. These molecular signatures of the CabHLH121 TF gene have the potential to regulate both PW and PH traits through the modulation of proliferation, differentiation and maintenance of the meristematic stem cell population in the SAM; therefore, these signatures will be useful in the translational genomic study of chickpea genetic enhancement. The restructured cultivars with desirable PH (semidwarf) and PW will ensure maximal planting density in a specified cultivable field area, thereby enhancing the overall yield and productivity of chickpea. This can essentially facilitate the achievement of better remunerative outputs by farmers with rational land use, therefore ensuring global food security in the present scenario of an increasing population density and shrinking per capita land area

    ABC Transporter-Mediated Transport of Glutathione Conjugates Enhances Seed Yield and Quality in Chickpea

    Get PDF
    The identification of functionally relevant molecular tags is vital for genomics-assisted crop improvement and enhancement of seed yield, quality, and productivity in chickpea (Cicer arietinum). The simultaneous improvement of yield/productivity as well as quality traits often requires pyramiding of multiple genes, which remains a major hurdle given various associated epistatic and pleotropic effects. Unfortunately, no single gene that can improve yield/productivity along with quality and other desirable agromorphological traits is known, hampering the genetic enhancement of chickpea. Using a combinatorial genomics-assisted breeding and functional genomics strategy, this study identified natural alleles and haplotypes of an ABCC3-type transporter gene that regulates seed weight, an important domestication trait, by transcriptional regulation and modulation of the transport of glutathione conjugates in seeds of desi and kabuli chickpea. The superior allele/haplotype of this gene introgressed in desi and kabuli near-isogenic lines enhances the seed weight, yield, productivity, and multiple desirable plant architecture and seed-quality traits without compromising agronomic performance. These salient findings can expedite crop improvement endeavors and the development of nutritionally enriched high-yielding cultivars in chickpea

    De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis

    No full text
    Abstract Background Rose-scented geranium ( Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. Results De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623\ua0bp, and N50 length: 752\ua0bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Conclusion Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding

    Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea

    Get PDF
    Identification of potential genes/alleles governing complex seed-protein content (SPC) trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10 to 20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 x ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most promising in chickpea. The informative functionally relevant molecular tags scaled-down essentially have potential to accelerate marker-assisted genetic improvement by developing nutritionally-rich chickpea cultivars with enhanced seed-protein content

    A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea

    Get PDF
    Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helixā€“loopā€“helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars
    corecore