8 research outputs found

    Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs

    Get PDF
    Purpose: Constitutively decreased TGFBR1 allelic expression is emerging as a potent modifier of colorectal cancer risk in mice and humans. This phenotype was first observed in mice, then in lymphoblastoid cell lines from patients with microsatellite stable colorectal tumors. Patients and Methods: We assessed the frequency of constitutively decreased TGFBR1 allelic expression and association with SNPs covering the TGFBR1 locus using RNA and DNA extracted from the peripheral blood lymphocytes of 118 consecutive patients with biopsy-proven adenocarcinoma of the colon or the rectum. Results: We found that 11(9.3%) of 118 patients exhibited decreased TGFBR1 allelic expression (TGFBR1 ASE). TGFBR1 ASE was strongly associated with three SNPs in linkage disequilibrium with each other: rs7034462 (p = 7.2 × 10-4), TGFBR1*6A (p = 1.6 × 10-4) and rs11568785 (p = 1.4 × 10-4). Conclusion: These results confirm the high prevalence of constitutively decreased TGFBR1 allelic expression among patients with colorectal cancer. The association of this phenotype with TGFBR1*6A, rs7034462 and rs1156875 suggests an association between TGFBR1 SNPs and colorectal cancer, which warrants additional studies

    14-3-3τ Regulates Ubiquitin-Independent Proteasomal Degradation of p21, a Novel Mechanism of p21 Downregulation in Breast Cancer▿ †

    No full text
    14-3-3 proteins regulate many cellular functions, including proliferation. However, the detailed mechanisms by which they control the cell cycle remain to be fully elucidated. We report that one of the 14-3-3 isoforms, 14-3-3τ, is required for the G1/S transition through its role in ubiquitin-independent proteasomal degradation of p21. 14-3-3τ binds to p21, MDM2, and the C8 subunit of the 20S proteasome in G1 phase and facilitates proteasomal targeting of p21. This function of 14-3-3τ may be deregulated in cancer. The overexpression of 14-3-3τ is frequently found in primary human breast cancer and correlates with lower levels of p21 and shorter patient survival. Tenascin-C, an extracellular matrix protein involved in tumor initiation and progression and a known 14-3-3τ inducer, decreases p21 and abrogates adriamycin-induced G1/S arrest. It has been known that p21 is required for a proper tamoxifen response in breast cancer. We show that the overexpression of 14-3-3τ inhibits tamoxifen-induced p21 induction and growth arrest in MCF7 cells. Together, the findings of our studies strongly suggest a novel oncogenic role of 14-3-3τ by downregulating p21 in breast cancer. Therefore, 14-3-3τ may be a potential therapeutic target in breast cancer

    Regulation of p53 by TopBP1: a Potential Mechanism for p53 Inactivation in Cancer▿ †

    No full text
    Proper control of the G1/S checkpoint is essential for normal proliferation. The activity of p53 must be kept at a very low level under unstressed conditions to allow growth. Here we provide evidence supporting a crucial role for TopBP1 in actively repressing p53. Depletion of TopBP1 upregulates p53 target genes involved in cell cycle arrest and apoptosis and enhances DNA damage-induced apoptosis. The regulation is mediated by an interaction between the seventh and eighth BRCT domains of TopBP1 and the DNA-binding domain of p53, leading to inhibition of p53 promoter binding activity. Importantly, TopBP1 overexpression is found in 46 of 79 primary breast cancer tissues and is associated with high tumor grade and shorter patient survival time. Overexpression of TopBP1 to a level comparable to that seen in breast tumors leads to inhibition of p53 target gene expression and DNA damage-induced apoptosis and G1 arrest. Thus, a physiological level of TopBP1 is essential for normal G1/S transition, but a pathological level of TopBP1 in cancer may perturb p53 function and contribute to an aggressive tumor behavior

    Phase 1b study of otlertuzumab (TRU-016), an anti-CD37 monospecific ADAPTIRℱ therapeutic protein, in combination with rituximab and bendamustine in relapsed indolent lymphoma patients

    No full text
    PURPOSE: CD37 is cell surface tetraspanin present on normal and malignant B cells. Otlertuzumab (TRU-016) is a novel humanized anti-CD37 protein therapeutic that triggers direct caspase independent apoptosis of malignant B cells and induces antibody-dependent cell-mediated cytotoxicity. This study evaluated the safety, pharmacokinetics, and efficacy of otlertuzumab administered in combination with rituximab and bendamustine to patients with relapsed, indolent B-cell non-Hodgkin Lymphoma (NHL). METHODS: Patients with relapsed or refractory NHL received otlertuzumab (10 or 20 mg/kg) intravenously (IV) on days 1 and 15, bendamustine (90 mg/m(2)) on days 1 and 2, and rituximab (375 mg/m(2)) on day 1 for up to six 28 day cycles. Responses were determined using standard criteria. RESULTS: Twelve patients were treated with 6 patients at each dose level; median age was 57 years (range, 51–79), and median number of prior regimens was 3 (range, 1–4). All patients had relapsed after prior rituximab including 7 refractory to their most recent previous treatment. In the 10 and 20 mg/kg dose cohorts, the mean half-life was 8 and 10 days following the first dose, and 12 or 14 days following 12 doses of otlertuzumab, respectively. Overall response rate was 83 % (10/12) with 4 CRs (32 %). The most frequent adverse events were neutropenia, nausea, fatigue, leukopenia, and insomnia; most were grade 1 or 2. CONCLUSIONS: Otlertuzumab in combination with rituximab and bendamustine was well tolerated and induced responses in the majority of patients with relapsed indolent B-NHL

    Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial

    No full text
    corecore