195 research outputs found

    Precision packet-based frequency transfer based on oversampling

    Get PDF
    Frequency synchronization of a distributed measurement system requires the transfer of an accurate frequency reference to all nodes. The use of a general-purpose packet-based network for this aim is analyzed in this paper, where oversampling is considered as a means to counter the effects of packet delay variation on time accuracy. A comprehensive analysis that includes the stability of the local clock is presented and shows that frequency transfer through a packet network of this kind is feasible, with an accuracy level that can be of interest to a number of distributed measurement applications

    Efficient detection for multifrequency dynamic phasor analysis

    Get PDF
    Analysis of harmonic and interharmonic phasors is a promising smart grid measurement and diagnostic tool. This creates the need to deal with multiple phasor components having different amplitudes, including interharmonics with unknown frequency locations. The Compressive Sensing Taylor-Fourier Multifrequency (CSTFM) algorithm provides very accurate results under demanding test conditions, but is computationally demanding. In this paper we present a novel frequency search criterion with significantly improved effectiveness, resulting in a very efficient revised CSTFM algorithm

    Measuring Cerebral Activation From fNIRS Signals: An Approach Based on Compressive Sensing and Taylor-Fourier Model

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is a noninvasive and portable neuroimaging technique that uses NIR light to monitor cerebral activity by the so-called haemodynamic responses (HRs). The measurement is challenging because of the presence of severe physiological noise, such as respiratory and vasomotor waves. In this paper, a novel technique for fNIRS signal denoising and HR estimation is described. The method relies on a joint application of compressed sensing theory principles and Taylor-Fourier modeling of nonstationary spectral components. It operates in the frequency domain and models physiological noise as a linear combination of sinusoidal tones, characterized in terms of frequency, amplitude, and initial phase. Algorithm performance is assessed over both synthetic and experimental data sets, and compared with that of two reference techniques from fNIRS literature

    Definition and assessment of reference values for PMU calibration in static and transient conditions

    Get PDF
    The calibration of Phasor Measurement Units (PMUs) consists of comparing Coordinated Universal Time (UTC) time-stamped phasors (synchrophasors) estimated by the PMU under test, against reference synchrophasors generated through a PMU calibrator. The IEEE Standard C37.118-2011 and its amendment (IEEE Std) describe compliance tests for static and dynamic conditions, and indicate the relative limits in terms of accuracy. In this context, the paper focuses on the definition and accuracy assessment of the reference synchrophasors in the test conditions dictated by the above IEEE Std. In the first part of the paper, we describe the characterization of a nonlinear least-squares (NL-LSQ) fitting algorithm used to determine the parameters of the reference synchrophasors. We analyse the uniqueness and robustness of the solution provided by the algorithm. We assess its accuracy within the whole range of static tests required by the IEEE Std. In the second part, we discuss the appropriateness of synchrophasor model to evaluate the PMU performance in step test conditions. We compare the proposed algorithm against two synchrophasor estimation algorithms. Finally, we propose a time domain process for the better evaluation of PMU performances in transient conditions

    Inverse filtering with signal-adaptive constraints

    No full text
    The paper discusses linear inverse filtering (deconvolution) from a stochastic signal processing point of view. A direct link between regularized deconvolution and minimum variance estimation is established, and exploited to propose a simple, one-pass optimization procedure. Experimental verification confirms the good results obtainable by the proposed approach
    • …
    corecore