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Measuring Cerebral Activation from fNIRS Signals:
an Approach Based on Compressive Sensing and

Taylor-Fourier Model
Guglielmo Frigo, Sabrina Brigadoi, Giada Giorgi, Giovanni Sparacino, and Claudio Narduzzi

Abstract—Functional near-infrared spectroscopy (fNIRS) is a
non-invasive and portable neuroimaging technique that uses
near-infrared light to monitor cerebral activity by the so-called
haemodynamic responses (HRs). The measurement is challenging
because of the presence of severe physiological noise, such as
respiratory and vasomotor waves. In the present paper, a novel
technique for fNIRS signal de-noising and HR estimation is
described. The method relies on a joint application of Compressed
Sensing theory principles and Taylor-Fourier modelling of non-
stationary spectral components. It operates in the frequency
domain and models physiological noise as a linear combination of
sinusoidal tones, characterized in terms of frequency, amplitude
and initial phase. Algorithm performance is assessed over both
synthetic and experimental data-sets, and compared with that of
two reference techniques from fNIRS literature.

Keywords—functional near-infrared spectroscopy; haemodyna-
mic response; physiological noise; short-separation channels; de-
noising; compressive sensing; Taylor-Fourier modelling

I. INTRODUCTION

Near-infrared (NIR) spectroscopy is widely employed for
sensing and measurement e.g. in [1]–[4]. A variety of medical
measurement applications, ranging from the monitoring of
blood oxygenation level [5] to detection of circulatory diseases
(e.g. an arterial or venous occlusion) and glucose sensing [6],
[7], also rely on this technique.

In neuroscience, functional near-infrared spectroscopy
(fNIRS) is used to monitor cerebral activity and study healthy
or pathological brain activation to a variety of cognitive tasks
[8]. Since, after a particular stimulus or during a task, changes
occur in the concentrations of oxy-(HbO) and deoxy-(HbR)
haemoglobin (i.e., the molecules carrying oxygen in the blood),
these concentration changes can be interpreted as indirect
measurements of neural activity in the investigated brain area.
fNIRS operates in the red and near-infrared wavelength range
(650 to 950 nm), where HbO and HbR are the main absorbers
of light while other biological tissues such as skin and skull are
mainly transparent [9]. HbO and HbR concentration changes
can thus be recovered from fNIRS signals, yielding what is
called the haemodynamic response (HR) [10].
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Accurate fNIRS-based estimation of HR is, however, ex-
tremely difficult. Light in the near-infrared range, emitted by
sources placed on the subject’s head, reaches the cortex and
is back-scattered to detectors positioned several centimeters
from the source, hence travelling through the scalp, skull and
cerebrospinal fluid twice. Since the human scalp and skull are
highly vascularized, fNIRS signals are strongly affected by
cardiac activity, respiration and vasomotion, which are in fact
predominant. As a result, within the expected bandwidth, HR
is buried in ’physiological’ noise that needs to be removed
to recover true brain activity. Furthermore, changes in heart
rate and pressure of a subject may be correlated to a task, as
common emotional responses [11], introducing the possibility
of time-correlated disturbances.

A well known de-noising technique consists in accurately
estimating the noise signal first, then subtracting it from the
acquired signal in order to clean it up. This technique is widely
used in many contexts, ranging from speech recognition to
biomedical applications where signal-to-noise ratios (SNRs)
can be dramatically low [12], [13]. De-noising gets more dif-
ficult when physiological noise disturbances are non-stationary,
as in the fNIRS case, since both their amplitude and spectral
support can vary according to unpredictable and uncorrelated
trends.

In this context, the most challenging aspect is the accu-
rate measurement of the noise template that will then be
subtracted from the acquired waveform. The problem has
been approached in some cases by subtracting an average
noise estimate obtained over a number of signal segments
[14]. However, results may not be entirely satisfactory as the
variable part of the disturbance, which is left untouched, can
still be significant.

This paper proposes a novel processing approach for reliable
de-noising of fNIRS signals and improved HR estimation.
A super-resolution technique, based on Compressive Sensing
(CS) theory, is employed to estimate the spectral support of the
noise signal over a reasonably short observation interval [15].
Then, parameters of a Taylor-Fourier multifrequency (TFM)
model of the signal are identified, taking into account Taylor
expansion terms up to the second order to accurately estimate
also the amplitudes of noise components. A similar approach
has already been used with good results for gradient artifact
removal in concurrent electro-encephalographic and magnetic
resonance imaging acquisitions [16].

This work extends a study presented in preliminary form
in [17] and is organized as follows. In Section II the state
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of the art in HR retrieval techniques is briefly discussed. In
Section III the proposed algorithm is thoroughly described,
focusing the attention particularly on CS and TFM stages. To
assess the algorithm both synthetic and real experimental data,
illustrated in Section IV, are employed. Finally, in Section V
algorithm performance in terms of denoising capabilities and
HR recovery accuracy are assessed, also by a comparison with
two reference techniques from the fNIRS literature.

II. STATE OF THE ART

fNIRS is widely used as a non-invasive and portable neu-
roimaging technique. Recovering the informative part of the
desired HR signal from fNIRS measurements affected by
physiological noise is very challenging [18], [19] because, for
example, fluctuations arising from vasomotor waves have a
frequency content (∼0.04-0.15 Hz) that is superposed on the
expected HR bandwidth. Furthermore, physiological fluctua-
tions usually have higher amplitude than HR.

Several techniques have been proposed over the years. A
very simple and frequently used one is Conventional Averaging
(CA). The measured signal is simply band-pass filtered (0.01
– 3 Hz) to reduce high frequency noise and very slow trends,
then segmented into trials, each referred to a single kind of
stimulus. Trials related to the same stimulus type are averaged
together to obtain a mean HR. This is further smoothed with a
Savitzky-Golay filter with polynomial order equal to 3 and
frame size equal to 25 time-points. CA relies on working
hypotheses that may be questionable in practice, namely, exact
statistical independence between HR and physiological noise
components, as well as a difference in phase between stimulus
presentation rate and physiological oscillations, ensuring mu-
tual uncorrelation. As a result, the number of trials necessary to
accurately recover the underlying HR might be very large, thus
influencing overall experiment duration. Furthermore, when
physiological noise oscillations and stimulus presentation rate
are in phase, CA cannot distinguish between the two contri-
butions.

Given the proportionality between source-detector distance
and depth sensitivity (that is, increasing source-detector dis-
tance increases the proportion of photons that travelled to
deeper regions of the head [20]), a signal obtained with source-
detector distance shorter than 1 cm is expected to reflect only
superficial haemodynamic changes, induced by physiologi-
cal fluctuations but uncorrelated with stimulus-evoked brain
activity. The method proposed in [19], [21] assumes that,
in parallel to the ‘standard’ (long-separation – LS) fNIRS
signal, containing both HR and noise, a ‘background’ (short-
separation – SS) fNIRS signal is also collected. SS channels
are highly sensitive to superficial tissues and ideally should
have zero brain sensitivity. Therefore, the signal measured by
an SS channel should contain only noise components, which
can be subtracted from a simultaneously acquired LS signal
for de-noising.

In spite of the proven utility of SS signals, it is often coun-
terproductive to subtract the whole SS signal from the LS one.
In fact, only low-frequency physiological components, whose
spectral content is similar to HR, should be extrapolated from

the SS channels and subtracted from the LS ones. Furthermore,
non stationarity implies that physiological contributions may
significantly vary in both amplitude and spectral support, even
during a single HR event.

The recently proposed Reference-channel Modelling Cor-
rected Bayesian Approach (ReMCoBA) [22], [23] is a two-
step method. First, a model of physiological noise is derived
from the SS signal and subtracted from the LS signal. Then,
corrected LS data are further filtered, on a single trial basis,
by a non-parametric Bayesian approach, in order to reduce
residual random noise. ReMCoBA is able to estimate low-
frequency physiological components of interest from the SS
signal using a parametric multi-sine model. It is a model-free
method for HR recovery, since no prior information is required
about the underlying HR and recovery has been shown to be
accurate both in a synthetic and a real experimental scenario.
However, estimation of physiological noise model parameters
is not always easy and sometimes fails, since the frequency
spectrum is computed on a limited number of samples.

In Section V, ReMCoBA and CA are taken as reference
methods for comparison.

III. PROPOSED METHOD

The method proposed in this paper assumes that both LS
and SS signals are acquired by fNIRS. In the time domain,
sequences are defined over the discrete set of integer multiples
of the sampling period Ts = 1/Fs.

A. Measurement data model

From a mathematical viewpoint, data can be described by
a superposition of haemodynamic response r[n], physiological
noise nP [n] and measurement uncertainty nM [n]:

xLS [n] = r[n] + nP [n] + nM [n]

xSS [n] = nP [n] + nM [n]. (1)

The contribution of HR is only present in LS channels.
The random process nM [n], which accounts for any source

of uncertainty related to the acquisition stage, particularly
ADC quantization error and non-ideal detector resolution, is
represented by white Gaussian noise.

A multisine model is adopted for physiological noise nP [n],
in the form:

nP [n] =

5∑
i=1

Ai sin (2πfinTs + φi) , (2)

where amplitudes and frequencies of the 5 components, simu-
lating heart beat, respiration, vasomotion, slow and very slow
physiological trends, vary randomly to simulate differences
among channels and non-stationarity of physiological oscil-
lations in the same channel.

The aim of the CS-TFM algorithm is to accurately identify
the parameters of the physiological noise template (2) from the
SS channel, then subtract the resulting estimate n̂P [n] from
the standard channel. For each considered LS and SS channel
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Fig. 1. Block diagram of the proposed algorithm main steps.

pair, a specific noise template is computed and the de-noised
single-trial HR profile:

r̂[n] = xLS [n]− n̂P [n] (3)

is obtained. This signal is then segmented into estimated HRs,
that are grouped according to the stimulus type and averaged
to obtain, for each subject and channel, the mean HR in each
condition.

A block diagram summarizing the steps involved in the
proposed algorithm is reported in Fig.1.

B. Band-pass filtering and scaling

In the fNIRS de-noising pipeline, it is common practice to
apply a band-pass filter to both LS and SS sequences before
any other processing takes place, attenuating any component
outside the range [0.01 ÷ 0.55] Hz. HR spectrum is likely
to exhibit a central frequency approximately equal to 0.08
Hz. As the sampling frequency selected for experimental data
acquisitions is 7.8125 Hz, the filter normalized bandwidth
is approximately 0.07. Therefore, realization by means of a
discrete finite impulse response (FIR) filter requires filter order
to be at least 50 (Hanning window employed in the synthesis).

fNIRS measurements also need to be suitably coupled
and, for each LS channel, the SS channel with the highest
correlation is chosen. Furthermore, due to the different paths
crossed by photons, LS and SS acquisitions may differ in mean
and standard deviation by up to one order of magnitude. Before
any further processing, then, the SS sequence has to be suitably
scaled according to a least square fitting approach. Data
acquired during a resting state period, where no significant
HR contribution is expected and it is reasonable to suppose
that physiological noise contributions are similar in LS and
SS channels, are generally considered for this purpose.

C. CS-based frequency estimation

CS-based super-resolution allows to overcome some of the
limitations of traditional DFT-based frequency analysis and
obtain accurate frequency estimates while working with shorter
observation intervals [15], [24]. For a given size of the data
record, it can reduce frequency uncertainty by one order
of magnitude over the standard DFT, properly accounting
for spectral leakage and long-range interference effects in

truncated DFT series. The super-resolution method is briefly
summarized here for the sake of completeness.

Let xSS [n] be divided into consecutive non-overlapping
records of N samples. Arranging record data into a column
vector x, its DFT coefficients can be expressed by the follow-
ing linear matrix relationship:

y = Wx (4)

where W is a N × N DFT matrix and complex DFT
coefficient values are defined on a frequency grid with step
∆fDFT = 1/(NTs), where Ts is the sampling interval in
fNIRS measurements.

Vector y can be modelled as a linear projection on a denser
frequency grid with step ∆fCS = 1/(HTs), H � N , by:

y = Db (5)

where D is a projection matrix of size N × H and b is
a vector of complex Fourier amplitudes. For the sake of
simplicity, H is assumed to be an integer multiple of N ,
namely H = pN , where the integer p is called super-resolution
factor and determines the gain with respect to the standard
DFT grid. This means a frequency component fi could be
located to within ±∆fCS/2.

Since dim(y)� dim(b), equation (5) is under-determined
and does not allow a closed-form solution. However (2) shows
that, by construction, nP [n] is sparse in the frequency domain.
Accordingly, a small set of elements in b is expected to have
significantly larger magnitude than others. Their indexes form
a set S called the signal support whose cardinality |S| depends
on the number of significant components, hence |S| � N .

Following the principles of CS theory, the sparsity assump-
tion is exploited to yield the best estimate of b as the vector
that satisfies the following condition:

b̂ = arg min
b
‖ b ‖1 s.t. ‖ y −Db̂ ‖22≤ ε (6)

where ε depends on the energy associated to non-sinusoidal
signal components, namely the random noise component
nM [n]. In the fNIRS case, the power ratio between nP [n] and
nM [n] is expected to be not lower than 10 dB.

The algorithm key point is the recovery of signal support S,
that allows to express y as a linear combination of a selected
subset of columns of D, whose indices belong to S. These
indices are determined directly from x via an iterative greedy
approach known as Orthogonal Matching Pursuit (OMP) [25].
Search iterations are stopped when the current approximation
error satisfies condition (6), no a priori information about the
support cardinality being required.

Support S identifies the frequencies of physiological noise
components on the dense grid. Given h ∈ S, the corresponding
frequency estimate is f̂h = h · ∆fCS ± ∆fCS/2. Due to
numerical conditioning effects, some performance degradation
is apparent as p gets larger, since coherence among the
columns of D is increased as well. Nevertheless, OMP ensures
exact solutions with overwhelming probability for SNR≥ 10
dB and p < 15 if p and N are coprimes, so that numerical
singularity problems are prevented [24].
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D. Noise template estimation

Once component frequencies are known, identification of the
noise template requires the accurate estimation of component
amplitudes. A straightforward approach based on least-squares
regression over the set of Fourier kernels:

ψh[n] = e±j2πf̂hnTs . (7)

would neglect dynamic trends related to non-stationary con-
ditions. More precisely, their effect would be averaged over
the entire observation interval. To cope with non-stationarity
within the data record, the SS signal spectral content is
represented by a Taylor-Fourier Multifrequency (TFM) model
[16], [26].

A K-th order Taylor expansion of (7) defines the transform
kernels:

ψ(k,h)[n] = (nTs)
ke±j2πf̂hnTs k = 0, . . .K, (8)

whereby each signal component can be represented by a set
of K linearly independent time-modulated kernels. This allows
to account for variations in both amplitude and instantaneous
phase according to individual complex envelopes.

For each considered SS segment, the TFM model is iden-
tified from the data record under investigation. The recovered
support S is exploited to develop a vector basis collected in
matrix B:

B = {ψ(k,h)[n] : h ∈ S, k = 0 . . .K} (9)

which spans a subspace T of the Hilbert space of complex-
valued functions L2(R). Physiological noise is approximated
by a linear expansion over the selected basis functions as:

n̂P [n] =

K∑
k=0

∑
h∈S

z(k,h)ψ(k,h)[n] (10)

TFM coefficients z(k,h) are obtained by least-squares projec-
tion on the Taylor-Fourier kernel set as:

z = (BHB)−1BHx (11)

where superscript H indicates the Hermitian transpose. Vector
z contains the terms of the Taylor expansions of physiological
noise components:

z(k,h) =
(nTs)

k

k!

dkAh(t)ejPh(t)

dtk
. (12)

In other words, TFM coefficients account not only for static
estimates of amplitude and initial phase, but also for their
k-th order time derivatives, referred to the mid-point of the
observation interval.

Equation (10) can be considered a detailed model of physi-
ological components, where inherent cerebral time variability
is addressed by means of higher order derivative terms. In
this sense, it represents an accurate noise template, specific
to the SS record under investigation and largely independent
from the additive measurement noise component. In fact, by
construction nM [n] is statistically independent from nP [n],
thus it does not belong to the vector subspace T and has

limited effect on the coefficient estimate (11).
Moreover, higher order expansion coefficients also have

physical meaning and can be used as control variables in a
closed-loop fashion. In particular, first derivatives of amplitude
and phase are exploited to detect unexpected drifts or tran-
sients, which might reveal an acquisition system malfunction
or an artifact due to subject movements. An SS record where
the first-order term exceeds the threshold |z(1,h)|/|z(0,h)| ≥
5%, ∀h ∈ S, is considered unreliable and discarded from
subsequent processing stages.

E. Subtraction and Average
The estimated noise template n̂P [n] is finally subtracted

from the corresponding LS record, yielding r̂[n]. In accordance
with the fNIRS model (1), it is reasonable to expect that
physiological components are nearly eliminated, while the
underlying HR is recovered to its original profile.

It is worth noticing that the noise template accounts only
for physiological disturbances in a specific frequency range,
neglecting random noise and physiological disturbances at
different frequencies. As a matter of fact, narrow-band filtering,
as discussed in Section III-B, should already have drastically
reduced these effects.

Nonetheless, in practical applications this could be not
enough. For this reason, data resulting from subtraction are
slightly smoothed by means of a Savitski-Golay filter (with
order equal to 3, length equal to 25 samples, as employed in
CA).

After completion of the de-noising procedure, the recovered
signal is segmented into trials and all those related to the same
stimulus type are averaged to produce a mean HR estimate
h̄HR[n]. A baseline correction is applied by subtracting the
recovered signal mean value calculated in a time range of 1 s
before the stimulus onset.

IV. DATA-SETS FOR METHOD ASSESSMENT

Both synthetic and real experimental data-sets have been
employed to characterize the performances of the proposed
algorithm and compare them with the reference techniques.
Features of the data-sets are summarized in this Section.

A. Real data-set
Data were acquired at the Department of Developmental

Psychology, University of Padova using a multi-channel, fre-
quency domain NIR spectrometer (ISS ImagentTM, Cham-
paign, Illinois, USA) equipped with 32 laser diodes (16 emit-
ting light at 690 nm and 16 at 830 nm) and 4 photo-multiplier
tubes (PMT). Laser sources were modulated at 110 MHz,
while the PMTs were modulated at 110.005 MHz, generating
a 5.0 kHz heterodyning frequency. For each source-detector
channel and wavelength the detected optical signal was con-
verted into an AC output and further processed to recover HbO
and HbR concentration changes. Sampling frequency was set
to 7.8125 Hz. Sources and detectors were bilaterally placed
on the motor cortex, as illustrated in Fig. 2, in order to obtain
5 LS channels and 2 SS channels per hemisphere.
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Fig. 2. Localization of acquisition channels for the experimental design. PMT
locations are marked by squares, circles show the positions of laser diodes.

The experiment consisted in a finger-tapping task and was
approved by the ethical committee of the University of Padova.
Subjects were instructed to relax during the first part of the
acquisition (resting state, RS) and were then presented with
a random series of stimuli. Subjects’ task was to perform a
right (T1) or left (T2) hand finger tapping depending on the
presented stimulus. For each condition (T1 or T2), 40 stimuli
were presented, with an inter-stimulus interval ∆T ranging
between 12 and 15 s.

B. Synthetic data-set

Let the experimental set-up provide a single stimulus at time
index n = 0. The evoked response is then modelled by a linear
combination of two time-variant gamma functions:

hHR[n] = a · (Γ1[n, τ1, σ1]− b · Γ2[n, τ2, σ2]) , (13)

where a defines the peak amplitude, b the undershoot level,
τi and σi determine respectively the duration and the starting
point of each gamma function, whose expression is:

Γi[n, τi, σi] =
1

k!τi

(
n− σi
τi

)k
e−(n−σi)/τi . (14)

Scale factor k determines the actual responsiveness, in terms
of peak latency and slope of the ascending edge.

Parameters in (14) have been suitably tuned to allow varia-
tions in HR peak amplitude1 and latency among trials, within
and between subjects. Their values are drawn from specific
Gaussian distributions, whose means and standard deviations
are reported in Table I. Inter-stimulus interval was set to
∆T = 12 s.

The desired signal component r[n] is a sequence of pulses,
each having shape hHR[n], modulated by the revealing vari-
able ρ(k) which can assume either nil or unit value, depending
on stimulus type (T1 or T2) and hemisphere location of the

1Amplitudes express molar concentration. Throughout the paper, values are
reported in mol/dm3 (also called “molar”, symbol: M), as the unit traditionally
used in the field, rather than in the SI unit mol/m3. The conversion factor is:
1 M = 103 mol/m3.

TABLE I. HR AMPLITUDE AND LATENCY FOR T1 AND T2 RESPONSES

Amplitude [nM] Latency [s]

Right Hand mean 360 5

T1 std dev 20 0.2

Left Hand mean 420 5.5

T2 std dev 15 0.1

Fig. 3. HRs in two different channels (top: channel 1 – bottom: channel 21).
Given the contralateral organization of the motor cortex, channels located in
the left hemisphere refer to right-hand tapping (T1), while those located in
the right hemisphere refer to left-hand tapping (T2).

selected channel:

r[n] =

Ntrials∑
i=1

ρ[i] · hHR[n− i ·∆T ] (15)

During resting states no event occurs in any LS channel.
Fig. 3 shows synthesized r[n] signals for two channels,

symmetrically located over the left and the right hemisphere.
As expected, during RS periods both channels exhibit neg-
ligible contribution. Otherwise, HR responses are alternately
shown by the two channels, respectively, during T1 and T2
events, reproducing a typical response to a finger tapping task
consistent with the real experimental configuration.

To simulate a real scenario where each channel is measuring
a different portion of the cortex, in some active channels the
HR was added with halved amplitude.

Amplitudes and frequencies of the 5 physiological noise
components simulating heart beat, respiration, vasomotion,
slow and very slow physiological trends, are sampled from
normal distributions whose means and standard deviations
are reported in Table II, using the unit “molar” (symbol
M) for molar concentration, whereas instantaneous phases φi
belong to uniform distributions U(0, 2π). The reason for this
variability is to simulate both differences among channels
and non stationarity of physiological oscillations in the same
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TABLE II. MEAN +/- STD. DEV. OF PHYSIOLOGICAL COMPONENT
FREQUENCIES AND AMPLITUDES.

Component Frequency [Hz] Amplitude [nM]
Almost Stationary F1 = .002± .0001 A1 = 700± 100

Ultra-low Freq. F2 = .01± .001 A2 = 700± 100
Vasomotor F3 = .07± .04 A3 = 400± 10
Respiratory F4 = .2± .03 A4 = 200± 10

Cardiac F5 = 1.1± .1 A5 = 400± 10
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Fig. 4. Simulated LS signal (red) and a sequence of simulated HRs (blue).

channel.
Finally, random process nM [n] represents acquisition un-

certainty as additive white Gaussian noise with mean value
400 nM and standard deviation 180 nM.

The relative proportion between the simulated HR profile
r[n] and the simulated noisy signal xLS [n] is presented in
Fig. 4(a) for a 240 s observation interval. Underlying HRs
are buried under low- and high-frequency oscillations, with
the overall SNR being nearly −10 dB. The value is obtained
from parameters in Table II estimated from real data. In the
corresponding frequency domain plot of Fig. 4(b) HR spectra
are entirely distorted by superposed physiological components.

V. RESULTS

The proposed CS-TFM algorithm was implemented in the
Matlab programming environment. Parameters for the CS
stage were set-up to provide the necessary resolution in the
frequency domain, record length being N = 501, whereas
the super-resolution factor is p = 11, which yields ∆fCS =
0.0014 Hz. A second-order Taylor-Fourier expansion, i.e.
K = 2, was selected as an optimal compromise between
system redundancy and TFM de-noising capabilities.

Both synthetic and experimental data-sets refer to the same
acquisition protocol. For every subject 14 channels are con-
sidered, 7 each for the right and left hemisphere, as presented
in Fig. 2. An acquisition session lasts nearly 25 minutes and
provides an alternate sequence of RS, T1 and T2 conditions.

HRs total 80 occurrences per channel, distributed between T1
and T2 responses on equal terms.

A. Synthetic Data-Sets
A synthetic data-set consists of 10 simulated subjects. By

construction, underlying HRs are known a priori. For every
channel, the CS-TFM average de-noised estimate h̄HR[n] is
computed from de-noised segments ĥHR[n] according to the
procedure in Sec. III-E. Given the nominal HR profile h∗HR,
response peak amplitude A∗p and latency L∗p, reconstruction
accuracy is assessed by means of three quantitative indices:

RMS = 100 · ‖ h
∗
HR − h̄HR ‖
‖ h∗HR ‖

AMP = 100 ·
|A∗p − Āp|
|A∗p|

(16)

LAT = |L∗p − L̄p|

The first one determines the relative root-mean-square devi-
ation between the nominal and recovered HR profile. The
second considers the relative deviation of the response peak
amplitude estimate, the third refers to latency.

Two operative conditions, with 10 simulated subjects each,
are considered, called “ideal” and “realistic”.

a) Ideal Data-Set: In the ideal condition, fNIRS measure-
ment data are synthetically generated in accordance with model
(1) provided in Section IV. For each channel, physiological
noise components are generated as independent realizations of
the same random variable. As a result, LS and SS contributions
differ only partially and the SS channel subtraction approach
is expected to drastically reduce physiological noise. In fact,
the ideal data-set implements the assumption that informative
and noisy contributions are statistically independent and un-
correlated.

Means and standard deviations of each index introduced in
(16) are presented in Table III. Remarkably, none exceeds 1%
relative error, showing that CS-TFM removes physiological
oscillations almost entirely from LS sequences. Nominal and
estimated HR profiles, presented in Fig. 5 for both full-
and half-amplitude HRs, confirm that, in this ideal condition,
the CS-TFM approach proves successful in removing noisy
components from the informative ones.

b) Realistic Data-Set: In realistic conditions, a larger
variability between LS and SS sequences is introduced. They
are still generated independently, but from different random
variables with specific and non coincident features. The as-
sumption of uncorrelated additive noise is also weakened:
LS and SS channels are located over different brain areas,
their photons follow different paths. Hence, the noise template

TABLE III. CS-TFM ACCURACY INDICES – HR RECONSTRUCTION
FROM SYNTHETIC IDEAL DATA-SET

RMS [%] AMP [%] LAT [s]
mean 0.05 0.97 0.07

std dev 0.04 0.84 0.09
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Fig. 5. Comparison between nominal (blue) and CS-TFM (red) response
profiles in the ideal synthetic data-set.

TABLE IV. ACCURACY INDICES – HR RECONSTRUCTION FROM
SYNTHETIC REALISTIC DATA-SET

RMS [%] AMP [%] LAT [s]
Full Half Full Half Full Half

CA mean 23 120 23 53 0.43 0.89

std dev 23 163 18 43 0.35 0.96

ReMCoBA mean 9 47 12 27 0.38 0.78

std dev 10.5 55 10 26 0.31 0.65

CS-TFM mean 15 52 17 22.5 0.36 0.57

std dev 7 12.6 8.2 8.3 0.32 0.42

inferred from SS records may not represent exactly the oscilla-
tions measured in the LS records. Accordingly, it is reasonable
to expect a degradation of algorithm performance compared to
the “ideal” condition.

In this more challenging scenario, CS-TFM de-noised es-
timates have been compared with those provided by CA
and ReMCoBA techniques. In Table IV, the corresponding
accuracy indices are given in terms of mean and standard de-
viation, for both full- and half-amplitude HRs. Fig. 6 presents
superposed CS-TFM, ReMCoBA and CA estimates, compared
with the corresponding nominal profile.

CS-TFM reconstruction accuracy indices are noticeably
worse than in the ideal condition, particularly, RMS error is
significantly increased. As confirmed by Fig. 6, physiologi-
cal oscillations partly survive the de-noising procedure and
produce some distortion in the recovered response profile.
However, this does not prevent reliable interpretation, as peak
amplitude and latency deviations from the reference values are
within about 20% and less than 1 s, respectively.

It is worth noting that CS-TFM outperforms CA in any
considered configuration, as expected since CA does not use
information coming from the SS signal. Conversely, ReM-
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Fig. 6. Comparison between nominal (blue) and CS-TFM (red), ReMCoBA
(green), and CA (magenta) estimates of the HR profiles in the realistic
synthetic data-set.
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Fig. 7. CS-TFM estimates of the HRs retrieved from a contralateral
hemisphere channel (blue) and an ipsilateral hemisphere channel (green).

CoBA and CS-TFM estimates are close competitors. The
former is better where RMS and AMP are considered, whereas
the latter prevails in terms of LAT. CS-TFM also shows lower
standard deviation, suggesting greater effectiveness in dealing
with acquisition uncertainty.

B. Real Data-Set

The experimental data-set considered in this paper contains
a single healthy participant acquisition, providing preliminary
results on the applicability of the algorithm to data acquired
in real settings. Due to the absence of a nominal reference
HR profile, proper quantitative assessment of algorithm perfor-
mance is almost unfeasible. However, based on prior functional
investigations it is expected that a finger tapping task should
produce larger HRs in the hemisphere contralateral to the hand
used in tapping.

Results for the single acquired subject show this pattern of
results. Fig. 7 considers two channels located over different
hemispheres and confirms that in the contralateral one, a sig-
nificant response is clearly detected, whereas in the ipsilateral
one, only residual oscillations are apparent.
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VI. CONCLUSION

A novel technique for fNIRS measurement data de-noising
has been presented. The proposed CS-TFM algorithm is able
to cope successfully with challenging conditions characterized
by predominant non-stationary noisy contributions.

The acquired sample sequences are divided into reasonably
short data records, which are processed singly, providing more
accurate and specific subtraction templates. The algorithm
relies on the SS channel paradigm, but a closed loop control
based on noise component amplitude and phase derivatives
allows a clear detection of motion artifacts or unexpected
transients which could severely affect estimation accuracy.

Results considering both ideal and realistic synthetic data
show a significant reduction of spurious components. These
preliminary results are encouraging since the current perfor-
mance of the algorithm is similar to that of ReMCoBA, an
established fNIRS de-noising algorithm.

Future developments encompass the testing of the CS-TFM
algorithm on a larger synthetic data-set (at least 30 simulated
subjects) and on an experimental dataset composed of several
participants, as well as trying to exploit the ability of the
algorithm to work with fewer samples to recover single trials
haemodynamic responses.

ACKNOWLEDGMENT

Sabrina Brigadoi is supported by Grant STPD11B8HM.

REFERENCES

[1] S. Fazli, S. Dahne, W. Samek, F. Bieszmann, and K.-R. Muller,
“Photonics technology for molecular imaging,” Proceedings of the
IEEE, vol. 103, no. 6, pp. 891–906, Jun 2015.

[2] M. Hosseini, B. Araabi, and H. Soltanian-Zadeh, “Pigment melanin:
Pattern for iris recognition,” Instrumentation and Measurement, IEEE
Transactions on, vol. 59, no. 4, pp. 792–804, Apr 2010.

[3] M. Larrain, A. Guesalaga, and E. Agosin, “A multipurpose portable
instrument for determining ripeness in wine grapes using NIR spec-
troscopy,” Instrumentation and Measurement, IEEE Transactions on,
vol. 57, no. 2, pp. 294–302, Feb 2008.

[4] J. Leis, D. Buttsworth, C. Snook, and G. Holmes, “Detection of
potentially explosive methane levels using a solid-state infrared source,”
Instrumentation and Measurement, IEEE Transactions on, vol. 63,
no. 12, pp. 3088 – 3095, Dec 2014.

[5] G. Salvatori, K. L. Suh, R. R. Ansari, and L. Rovati, “Instrumentation
and calibration protocol for a continuous wave near infrared hemoxime-
ter,” Instrumentation and Measurement, IEEE Transactions on, vol. 55,
no. 4, pp. 1368–1376, Aug 2006.

[6] Y. Yamakoshi, M. Ogawa, T. Yamakoshi, M. Satoh, M. Nogawa,
S. Tanaka, T. Tamura, P. Rolfe, and K. Yamakoshi, “A new non-invasive
method for measuring blood glucose using instantaneous differential
near infrared spectrophotometry,” in Engineering in Medicine and Bi-
ology Society, 2007. EMBS 2007. 29th Annual International Conference
of the IEEE, Aug 2007, pp. 2964–2967.

[7] M. Arnold, J. Olesberg, and G. Small, Near-Infrared Spectroscopy for
Noninvasive Glucose Sensing. Wiley, 2010, ch. 13.

[8] D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years
of functional near-infrared spectroscopy: introduction for the special
issue.” NeuroImage, vol. 85 Pt 1, pp. 1–5, 2014.

[9] F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocar-
dial oxygen sufficiency and circulatory parameters.” Science, vol. 198,
no. 4323, pp. 1264–7, 1977.

[10] R. B. Buxton, Introduction Functional Magnetic Resonance Imaging
Principles And Techniques. Cambridge University Press, 2002.

[11] E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl,
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