8 research outputs found

    Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers.

    No full text
    Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies. However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solutions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual nozzles devices to fixed-target sample environment technology

    Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers

    No full text
    Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies. However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solutions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual nozzles devices to fixed-target sample environment technology

    Development and Characterization of Bio-Based Composite Films for Food Packing Applications Using Boiled Rice Water and <i>Pistacia vera</i> Shells

    No full text
    Customer demand for natural packaging materials in the food industry has increased. Biocomposite films developed using boiled rice water could be an eco-friendly and cost-effective packaging product in the future. This study reports the development of bio-based films using waste materials, such as boiled rice water (matrix) and Pistacia vera shells (reinforcement material), using an adapted solution casting method. Several film combinations were developed using various concentrations of plasticizing agent (sorbitol), thickening agent (oil and agar), and stabilizing agents (Arabic gum, corn starch, and Pistacia vera shell powder). Various packaging properties of the film were analyzed and examined to select the best bio-based film for food packaging applications. The film fabricated with Pistacia vera shell powder in the biocomposite film exhibited a reduced water solubility, swelling index, and moisture content, as compared to polyethene packaging material, whereas the biocomposite film exhibited poor antimicrobial properties, high vapor transmission rate, and high biodegradability rate. The packaging properties and characterization of the film indicated that the boiled rice water film with Pistacia vera shell powder was suitable for packaging material applications
    corecore