142 research outputs found

    Leakage and the Reproducibility Crisis in ML-based Science

    Full text link
    The use of machine learning (ML) methods for prediction and forecasting has become widespread across the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. In this paper, we systematically investigate reproducibility issues in ML-based science. We show that data leakage is indeed a widespread problem and has led to severe reproducibility failures. Specifically, through a survey of literature in research communities that adopted ML methods, we find 17 fields where errors have been found, collectively affecting 329 papers and in some cases leading to wildly overoptimistic conclusions. Based on our survey, we present a fine-grained taxonomy of 8 types of leakage that range from textbook errors to open research problems. We argue for fundamental methodological changes to ML-based science so that cases of leakage can be caught before publication. To that end, we propose model info sheets for reporting scientific claims based on ML models that would address all types of leakage identified in our survey. To investigate the impact of reproducibility errors and the efficacy of model info sheets, we undertake a reproducibility study in a field where complex ML models are believed to vastly outperform older statistical models such as Logistic Regression (LR): civil war prediction. We find that all papers claiming the superior performance of complex ML models compared to LR models fail to reproduce due to data leakage, and complex ML models don't perform substantively better than decades-old LR models. While none of these errors could have been caught by reading the papers, model info sheets would enable the detection of leakage in each case

    A Critical Look at Decentralized Personal Data Architectures

    Full text link
    While the Internet was conceived as a decentralized network, the most widely used web applications today tend toward centralization. Control increasingly rests with centralized service providers who, as a consequence, have also amassed unprecedented amounts of data about the behaviors and personalities of individuals. Developers, regulators, and consumer advocates have looked to alternative decentralized architectures as the natural response to threats posed by these centralized services. The result has been a great variety of solutions that include personal data stores (PDS), infomediaries, Vendor Relationship Management (VRM) systems, and federated and distributed social networks. And yet, for all these efforts, decentralized personal data architectures have seen little adoption. This position paper attempts to account for these failures, challenging the accepted wisdom in the web community on the feasibility and desirability of these approaches. We start with a historical discussion of the development of various categories of decentralized personal data architectures. Then we survey the main ideas to illustrate the common themes among these efforts. We tease apart the design characteristics of these systems from the social values that they (are intended to) promote. We use this understanding to point out numerous drawbacks of the decentralization paradigm, some inherent and others incidental. We end with recommendations for designers of these systems for working towards goals that are achievable, but perhaps more limited in scope and ambition
    • …
    corecore