9,618 research outputs found

    Lack of Hyperbolicity in Asymptotic Erd\"os--Renyi Sparse Random Graphs

    Full text link
    In this work we prove that the giant component of the Erd\"os--Renyi random graph G(n,c/n)G(n,c/n) for c a constant greater than 1 (sparse regime), is not Gromov δ\delta-hyperbolic for any positive δ\delta with probability tending to one as n→∞n\to\infty. As a corollary we provide an alternative proof that the giant component of G(n,c/n)G(n,c/n) when c>1 has zero spectral gap almost surely as n→∞n\to\infty.Comment: Updated version with improved results and narrativ

    Free energies in the presence of electric and magnetic fields

    Full text link
    We discuss different free energies for materials in static electric and magnetic fields. We explain what the corresponding Hamiltonians are, and describe which choice gives rise to which result for the free energy change, dF, in the thermodynamic identity. We also discuss which Hamiltonian is the most appropriate for calculations using statistical mechanics, as well as the relationship between the various free energies and the "Landau function", which has to be minimized to determine the equilibrium polarization or magnetization, and is central to Landau's theory of second order phase transitions

    Load Shifting in the Smart Grid: To Participate or Not?

    Full text link
    Demand-side management (DSM) has emerged as an important smart grid feature that allows utility companies to maintain desirable grid loads. However, the success of DSM is contingent on active customer participation. Indeed, most existing DSM studies are based on game-theoretic models that assume customers will act rationally and will voluntarily participate in DSM. In contrast, in this paper, the impact of customers' subjective behavior on each other's DSM decisions is explicitly accounted for. In particular, a noncooperative game is formulated between grid customers in which each customer can decide on whether to participate in DSM or not. In this game, customers seek to minimize a cost function that reflects their total payment for electricity. Unlike classical game-theoretic DSM studies which assume that customers are rational in their decision-making, a novel approach is proposed, based on the framework of prospect theory (PT), to explicitly incorporate the impact of customer behavior on DSM decisions. To solve the proposed game under both conventional game theory and PT, a new algorithm based on fictitious player is proposed using which the game will reach an epsilon-mixed Nash equilibrium. Simulation results assess the impact of customer behavior on demand-side management. In particular, the overall participation level and grid load can depend significantly on the rationality level of the players and their risk aversion tendency.Comment: 9 pages, 7 figures, journal, accepte

    Integrating Energy Storage into the Smart Grid: A Prospect Theoretic Approach

    Full text link
    In this paper, the interactions and energy exchange decisions of a number of geographically distributed storage units are studied under decision-making involving end-users. In particular, a noncooperative game is formulated between customer-owned storage units where each storage unit's owner can decide on whether to charge or discharge energy with a given probability so as to maximize a utility that reflects the tradeoff between the monetary transactions from charging/discharging and the penalty from power regulation. Unlike existing game-theoretic works which assume that players make their decisions rationally and objectively, we use the new framework of prospect theory (PT) to explicitly incorporate the users' subjective perceptions of their expected utilities. For the two-player game, we show the existence of a proper mixed Nash equilibrium for both the standard game-theoretic case and the case with PT considerations. Simulation results show that incorporating user behavior via PT reveals several important insights into load management as well as economics of energy storage usage. For instance, the results show that deviations from conventional game theory, as predicted by PT, can lead to undesirable grid loads and revenues thus requiring the power company to revisit its pricing schemes and the customers to reassess their energy storage usage choices.Comment: 5 pages, 4 figures, conferenc
    • …
    corecore