26 research outputs found

    Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to Naïve Conversion

    Get PDF
    Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics

    Pivotal Role of IL-22 Binding Protein in the Epithelial Autoregulation of Interleukin-22 Signaling in the Control of Skin Inflammation

    Get PDF
    Disruption of skin homeostasis can lead to inflammatory cutaneous diseases resulting from the dysregulated interplay between epithelial keratinocytes and immune cells. Interleukin (IL)-22 signaling through membrane-bound IL-22 receptor 1 (IL-22R1) is crucial to maintain cutaneous epithelial integrity, and its malfunction mediates deleterious skin inflammation. While IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling, how IL-22BP controls epithelial functionality to prevent skin inflammation remains unclear. Here, we describe the pivotal role of IL-22BP in mediating epithelial autoregulation of IL-22 signaling for the control of cutaneous pathogenesis. Unlike prominent expression of IL-22BP in dendritic cells in lymphoid tissues, epidermal keratinocytes predominantly expressed IL-22BP in the skin in the steady state, whereas its expression decreased during the development of psoriatic inflammation. Deficiency in IL-22BP aggravates psoriasiform dermatitis, accompanied by abnormal hyperproliferation of keratinocytes and excessive cutaneous inflammation as well as enhanced dermal infiltration of granulocytes and γδT cells. Furthermore, IL-22BP abrogates the functional alternations of keratinocytes upon stimulation with IL-22. On the other hand, treatment with IL-22BP alleviates the severity of cutaneous pathology and inflammation in psoriatic mice. Thus, the fine-tuning of IL-22 signaling through autocrine IL-22BP production in keratinocytes is instrumental in the maintenance of skin homeostasis

    Estrogen-dependent regulation of sodium/hydrogen exchanger-3 (NHE3) expression via estrogen receptor β in proximal colon of pregnant mice

    Get PDF
    Although constipation is very common during pregnancy, the exact mechanism is unknown. We hypothesized that the involvement of estrogen receptor (ER) in the regulation of electrolyte transporter in the colon leads to constipation. In this study, the intestines of normal female ICR mouse and pregnant mice were examined for the expression of ERβ and ERβ by immunohistochemistry and in situ hybridization. ERα, but not ERα, was expressed in surface epithelial cells of the proximal, but not distal, colon on pregnancy days 10, 15, and 18, but not day 5, and the number of ERα-positive cells increased signiWcantly during pregnancy. Expression of NHE3, the gene that harbors estrogen response element, examined by immunohistochemistry and western blotting, was localized in the surface epithelial cells of the proximal colon and increased in parallel with ERβ expression. In ovariectomized mice, NHE3 expression was only marginal and was up-regulated after treatment with 17- estradiol (E2), but not E 2 + ICI 182,780 (estrogen receptor antagonist). Moreover, knock-down of ERβ expression by electroporetically transfected siRNA resulted in a signiWcant reduction of NHE3 expression. These results indicate that ERβ regulates the expression of NHE3 in the proximal colon of pregnant mice through estrogen action, suggesting the involvement of increased sodium absorption by up-regulated NHE3 in constipation during pregnancy

    The role of estrogen receptors in intestinal homeostasis and disease

    Get PDF
    Estrogen has a pivotal role in many biological functions in both reproductive and non-reproductive organs, mediating actions through its receptors, estrogen receptor α (ERα) and ERβ. The expression of ERs is widespread in the body and is implicated in normal physiological processes as well as in disease conditions, including intestinal diseases. Immunohistochemical and functional analyses have revealed that ERβ is the predominant ER type in intestinal tract, but not ERα. The ERβ mediates to provide protection against duodenal ulcer, inflammatory bowel disease and colon cancer but may also contribute to the progression of constipation. In this review, we summarize the recent findings regarding estrogen and its receptors and their role in intestinal diseases. Based on these findings, it is possible to drive the pathogenesis of intestinal diseases using ER-subtype selective inhibitors or stimulators

    Gut dysbiosis promotes the breakdown of oral tolerance mediated through dysfunction of mucosal dendritic cells

    No full text
    Summary: While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance
    corecore