4,617 research outputs found

    Cyclic Coverings of genus 2 curves of Sophie Germain type

    Full text link
    We consider cyclic unramified coverings of degree d of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. The rich geometry of the associated Prym map, has been studied in several papers, and the cases d=2, 3, 5, 7 are quite well-understood. Nevertheless, very few is known for higher values of d. In this article we investigate if the covering can be reconstructed from its Prym variety, that is, if the generic Prym Torelli Theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for d≥11d\ge 11 prime such that (d−1)/2(d-1)/2 is also prime. We use results of arithmetic nature on GL2GL_2-type abelian varieties combined with theta-duality techniques

    COMPARATIVE ANALYSIS OF A PASSIVE SYSTEM WITH AN ACTIVE WATER HEATING SYSTEM BY MEANS OF VACUUM SOLAR COLLECTOR GLASS TUBES

    Get PDF
    The importance of renewable energy conversion in heat generation systems is increasing. Being a form of clean energy production, solar water heating systems can substitute part of the electricity consumption in Brazilian energy matrix. Beyond the environmental benefits, the use of such systems brings economic benefits to the country and especially those who use them, saving the use of other energy sources for water heating. In Brazil, the solar water heating is carried out mainly by flat solar collectors, a widely known technology produced in the country at low prices. Nowadays another technology is being used: the evacuated solar collectors. These collectors are being worldwide produced on a large scale and they are imported and inserted at competitive prices in the domestic market. Therefore, it is necessary to understand these systems and their operation to avoid errors in their installation and optimize their use. This work accomplishes a comparative analysis of a solar water heating system composed by a water- in-glass evacuated tube solar collector working in forced circulation, varying the flow, with the same system working in thermosyphon circulation. This comparison was performed by determining the annual energy the system can produce for each type of circulation, which was calculated based on the ISO 9459-2 standard and the climatic data of Porto Alegre city, Rio Grande Do Sul State. To perform these measures, a testing bench was mounted with sensors and measuring instruments which were calibrated before use. The results show that the system with thermosyphon circulation produces more annual energy than the forced circulation system where the water temperature stratification in the thermal reservoir was lower

    Evolutionary vaccination dilemma in complex networks

    Get PDF
    In this work we analyze the evolution of voluntary vaccination in networked populations by entangling the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end of each influenza season so that individuals take or do not take the vaccine upon their previous experience. Our framework thus puts in competition two well-known dynamical properties of scale-free networks: the fast propagation of diseases and the promotion of cooperative behaviors. Our results show that when vaccine is perfect, scale-free networks enhance the vaccination behavior with respect to random graphs with homogeneous connectivity patterns. However, when imperfection appears we find a crossover effect so that the number of infected (vaccinated) individuals increases (decreases) with respect to homogeneous networks, thus showing the competition between the aforementioned properties of scale-free graphs

    A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In several fields of enquiry such as geothermal energy, geology and agriculture, it is of interest to study the thermal behaviour of shallow soils. For this, several analytical and numerical methodologies have been proposed to analyse the temperature variation of the soil in the short and long term. In this paper, a comparative study of different models (sinusoidal, semi-infinite and finite difference method) is conducted to estimate the shallow soil temperature variation in the short and long term. The models were compared with hourly experimental measured data of soil temperature in Leicester, UK, at depths between 0.75 and 2.75 m. The results show that the sinusoidal model is not appropriate to evaluate the short-term temperature variations, such as hourly or daily fluctuations. Likewise, this model is highly affected by the undisturbed ground temperature and can lead to very high errors. Regarding the semi-infinite model, it is accurate enough to predict the short-term temperature variation. However, it is useless to predict the long-term variation at depths greater than 1 m. The finite difference method (FDM) considering the air temperature as a boundary condition for the soil surface is the most accurate approach for estimating both short and long-term temperature variations while the FDM with heat flux as boundary condition is the least accurate approach due to the uncertainty of the assumed parameters. The ranges of errors for the sinusoidal, semi-infinite and FDM are found to be from 76.09 to 142.13%, 12.11 to 104.88% and 1.82 to 28.14% respectively

    PANIC: the new panoramic NIR camera for Calar Alto

    Full text link
    PANIC is a wide-field NIR camera, which is currently under development for the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope (0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about 77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat folding mirrors with diameters up to 282 mm and nine lenses with diameters between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters distributed over four filter wheels. Narrow band (1%) filters can be used. The instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes and Instrumentation 2008 in Marseille (France

    Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels

    Get PDF
    Understanding arc magma genesis is critical to deciphering the construction of continental crust, understanding the relationship between plutonic and volcanic rocks, and for assessing volcanic hazards. Arc magma genesis is complex. Interpreting the underlying causes of major and trace element diversity in erupted magmas is challenging and often non-unique. To navigate this complexity mafic magma diversity is investigated using sample suites that span short temporal and spatial scales. These constraints allow us to evaluate models of arc magma genesis and their geochemical implications based on physical arguments and recent model results. Young volcanic deposits (≲18 kyr) are analysed from the Southern Volcanic Zone (SVZ), Chile, in particular suites of scoria cones on the flanks of arc stratovolcanoes that have erupted relatively primitive magmas of diverse compositions. Our study is centred on the high-resolution post-glacial tephrochronological record for Mocho-Choshuenco volcano where tight age constraints and a high density of scoria cones provide a spatially well-resolved mafic magma dataset. Two compositional trends emerge from the data. Firstly, magmas from cones on the flanks of the main edifice become more mafic with distance from the central vent. This is attributed to fractional crystallisation processes within the crust, with distal cones sampling less differentiated magmas. Secondly, there is a set of cones with distinct major and trace element compositions that are more primitive but enriched in incompatible elements relative to the central system and other ‘normal SVZ’ magmas. This distinct signature – termed the ‘Kangechi’ signature – is observed at three further clusters of cones within the SVZ. This is attributed to greater preservation of the enriched melt signature arising from reactive melt transport within the mantle wedge. Our model has important implications for arc magma genesis in general, and in particular for the spatial and temporal scales over which compositional variations are preserved in erupted magmas
    • …
    corecore