18 research outputs found

    Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via beta(3)AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia

    Get PDF
    Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central beta(1)-adrenergic receptors (AR) (brain) and peripheral beta(2)AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate beta(3)AR. However, the relationship between IH and beta(3)AR in the modification of HPV is unknown. It has been observed that chronic stimulation of beta(3)AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates beta(3)AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O-2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of proinflammatory pulmonary macrophages. In these macrophages, both beta(3)AR and iNOS were upregulated and stimulation of the beta(3)AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of beta(3)AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of beta(3)AR/iNOS signaling in chronic IH

    beta2-adrenergic receptor-dependent attenuation of hypoxic pulmonary vasoconstriction prevents progression of pulmonary arterial hypertension in intermittent hypoxic rats

    No full text
    In sleep apnea syndrome (SAS), intermittent hypoxia (IH) induces repeated episodes of hypoxic pulmonary vasoconstriction (HPV) during sleep, which presumably contribute to pulmonary arterial hypertension (PAH). However, the prevalence of PAH was low and severity is mostly mild in SAS patients, and mild or no right ventricular hypertrophy (RVH) was reported in IH-exposed animals. The question then arises as to why PAH is not a universal finding in SAS if repeated hypoxia of sufficient duration causes cycling HPV. In the present study, rats underwent IH at a rate of 3 min cycles of 4-21% O2 for 8 h/d for 6 w. Assessment of diameter changes in small pulmonary arteries in response to acute hypoxia and drugs were performed using synchrotron radiation microangiography on anesthetized rats. In IH-rats, neither PAH nor RVH was observed and HPV was strongly reversed. Nadolol (a hydrophilic β(1, 2)-blocker) augmented the attenuated HPV to almost the same level as that in N-rats, but atenolol (a hydrophilic β1-blocker) had no effect on the HPV in IH. These β-blockers had almost no effect on the HPV in N-rats. Chronic administration of nadolol during 6 weeks of IH exposure induced PAH and RVH in IH-rats, but did not in N-rats. Meanwhile, atenolol had no effect on morphometric and hemodynamic changes in N and IH-rats. Protein expression of the β1-adrenergic receptor (AR) was down-regulated while that of β2AR was preserved in pulmonary arteries of IH-rats. Phosphorylation of p85 (chief component of phosphoinositide 3-kinase (PI3K)), protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) were abrogated by chronic administration of nadolol in the lung tissue of IH-rats. We conclude that IH-derived activation of β2AR in the pulmonary arteries attenuates the HPV, thereby preventing progression of IH-induced PAH. This protective effect may depend on the β2AR-Gi mediated PI3K/Akt/eNOS signaling pathway

    Expression level of β<sub>1</sub>AR was decreased and β<sub>2</sub>AR was preserved in the pulmonary arteries of IH-rats.

    No full text
    <p>Quantitative immunohistochemistry of β<sub>1</sub> and β<sub>2</sub>AR was performed in the pulmonary arteries in the diameter range of 50 to 150 µm (n = 6 each). (A) representative images of immunohistochemistry, (B) mean optical density, % area, and expression level score. Quantification of the expression level of the protein was estimated as expression level score (ELS) : ELS = (mean optical density of positively stained area – mean optical density of background area) x percent area of positively stained. <sup>*</sup>Significant difference between N and IH-rats (<sup>**</sup><i>P</i>&lt;0.01).</p

    Chronic administration of nadolol induced PAH and RVH in IH-rats without pulmonary arterial hypertrophy.

    No full text
    <p>(A) Hemodynamic and morphometric change after chronic subcutaneous administration of atenolol and nadolol (n = 4 each) during 6weeks of IH exposure. Data are presented as mean ± S.D. <sup>*</sup>Significant change compared with every other group (<sup>*</sup><i>P</i>&lt;0.05, <sup>**</sup><i>P</i>&lt;0.01). (B) Representative images of small pulmonary arteries and assessment of pulmonary arterial hypertrophy by means of medial wall thickness in N and IH-rats with/without chronic administration of atenolol or nadolol (n = 4 each). There were no significant differences in medial wall thickness between each group. Calibration bar = 20 µm. Data are presented as mean ± S.D.</p

    Expression of β<sub>1</sub> and β<sub>2</sub>AR was slightly changed but not significant so in the lung of IH-rats.

    No full text
    <p>Quantitative analysis of β<sub>1</sub>AR, β<sub>2</sub>AR, and actin protein expression in whole lung of N-rats and IH-rats (n = 6 each) using Western blot. (A) representative Western blot bands, (B) relative amount of protein. Data are presented as mean ± S.D.</p

    IH-induced phosphorylation of p85, Akt and eNOS were abrogated by nadolol administration in the lung tissue of IH-rats.

    No full text
    <p>Quantitative analysis of phospho-p85, p85, phospho-Akt, Akt, phospho-eNOS, eNOS, and actin protein expression in whole lung of N-rats and IH-rats (n = 6 each) using Western blot. (A) representative Western blot bands, (B) relative amount of protein. Data are presented as mean ± S.D. <sup>*</sup>Significant difference between IH-group and each other groups (<sup>*</sup><i>P</i>&lt;0.05, <sup>**</sup><i>P</i>&lt;0.01). N: N-rats, NA:N-rats+atenolol, NN: N-rats+nadolol, IH: IH-rats, IA: IH-rats+atenolol, IN: IH-rats+nadolol.</p

    Selective blockade of peripheral β<sub>2</sub>AR restored HPV in IH-rats.

    No full text
    <p>(A) Representative microangiogram images showing the branching pattern of small pulmonary arteries during normoxia and in response to hypoxia with or without drugs. Black arrows point to branches of pulmonary arteries that have constricted in response to acute hypoxia. IH has no response to hypoxia, however, significant vasoconstriction is revealed with nadolol. The tungsten wire in the bottom right of each image is a reference of 50 µm diameter. (B) Relationship between vessel size and the magnitude of pulmonary vasoconstriction (% decrease in vessel diameter) in response to acute hypoxia (10% O<sub>2</sub> for 10 min) in N-rats and IH-rats with or without β-blocker administration. Data are presented as mean ± S.E.M. <sup>*</sup>Significant reduction in vessel diameter compared to normoxic condition (<sup>**</sup><i>P</i>&lt;0.01). <sup>†</sup>Significant difference between N-rats and IH-rats (<sup>††</sup><i>P</i>&lt;0.01).<sup> ‡</sup>Significant difference compared to without-drug. (<sup>‡‡</sup><i>P</i>&lt;0.01).</p

    Neither right ventricular hypertrophy nor RVSP elevation was observed after 6 weeks of IH exposure.

    No full text
    <p>Heart weight and right ventricular systolic pressure (RVSP) were measured after 6 weeks IH exposure (n = 10). Data are presented as mean ± S.D. RV: right ventricle weight, HW: heart weight, R/L+S (Fulton’s index): right ventricle weight/left ventricle and septum weight.</p
    corecore