20 research outputs found
Recommended from our members
Wind and Temperature Oscillations Generated by Wave–Turbulence Interactions in the Stably Stratified Boundary Layer
The authors investigate atmospheric internal gravity waves (IGWs): their generation and induction of global intermittent turbulence in the nocturnal stable atmospheric boundary layer based on the new concept of turbulence generation discussed in a prior paper by Sun et al. The IGWs are generated by air lifted by convergence forced by the colliding background flow and cold currents near the ground. The buoyancy-forced IGWs enhance wind speed at the wind speed wave crests such that the bulk shear instability generates large coherent eddies, which augment local turbulent mixing and vertically redistribute momentum and heat. The periodically enhanced turbulent mixing, in turn, modifies the air temperature and flow oscillations of the original IGWs. These turbulence-forced oscillations (TFOs) resemble waves and coherently transport momentum and sensible heat. The observed momentum and sensible heat fluxes at the IGW frequency, which are due to either the buoyancy-forced IGWs themselves or the TFOs, are larger than turbulent fluxes near the surface. The IGWs enhance not only the bulk shear at the wave crests, but also local shear over the wind speed troughs of the surface IGWs. Temporal and spatial variations of turbulent mixing as a result of this wave-induced turbulent mixing change the mean airflow and the shape of the IGWs.Keywords: Waves, Atmospheric, Wind stress, Drainage flow, Gravity waves, Boundary layer, Turbulenc
Recommended from our members
The Relationships among Wind, Horizontal Pressure Gradient, and Turbulent Momentum Transport during CASES-99
Relationships among the horizontal pressure gradient, the Coriolis force, and the vertical momentum transport by turbulent fluxes are investigated using data collected from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99). Wind toward higher pressure (WTHP) adjacent to the ground occurred about 50% of the time. For wind speed at 5 m above the ground stronger than 5 m s(-1), WTHP occurred about 20% of the time. Focusing on these moderate to strong wind cases only, relationships among horizontal pressure gradients, Coriolis force, and vertical turbulent transport in the momentum balance are investigated. The magnitude of the downward turbulent momentum flux consistently increases with height under moderate to strong winds, which results in the vertical convergence of the momentum flux and thus provides a momentum source and allows WTHP.In the along-wind direction, the horizontal pressure gradient is observed to be well correlated with the quadratic wind speed, which is demonstrated to be an approximate balance between the horizontal pressure gradient and the vertical convergence of the turbulent momentum flux. That is, antitriptic balance occurs in the along-wind direction when the wind is toward higher pressure. In the crosswind direction, the pressure gradient varies approximately linearly with wind speed and opposes the Coriolis force, suggesting the importance of the Coriolis force and approximate geotriptic balance of the airflow. A simple one-dimensional planetary boundary layer eddy diffusivity model demonstrates the possibility of wind directed toward higher pressure for a baroclinic boundary layer and the contribution of the vertical turbulent momentum flux to this phenomenon.Keywords: Baroclinic flows, Turbulence, Pressure, Ekman pumping, Boundary layer, transport, Barotropic flow
CASES-99: a comprehensive investigation of the stable nocturnal boundary layer
The Cooperative Atmosphere-Surface Exchange Study—1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbulent diffusion parameterizations in atmospheric models, particularly where the Richardson number exceeds 0.25. This extensive nocturnal boundary layer (NBL) dataset is available to the scientific community at large, and the CASES-99 participants encourage all interested parties to utilize it.Carmen Nappo acknowledges the support of the U.S. Army Research Laboratory under Grant MIPROB-NOAA007. JS and SB acknowledge the support of Army Research Office Grant DAAD 1999- 1-0320, National Science Foundation Grant ATM-9906637.
JC and ET acknowledge the Spanish Commission for Science and Technology through Projects CLI97-0343 and CLI99-1326- E
An introduction to atmospheric gravity waves
Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interactions of gravity waves with turbulence Includes a new application-based component for use in climate and weather predictions
A theoretical investigation of gravity-wave-generated stress and vorticity in the planetary boundary layer
Ph.D.George Chimona
Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer
Using the unprecedented observational capabilities deployed during the Cooperative Atmosphere-Surface Exchange Study-99 (CASES-99), we found three distinct turbulence events on the night of 18 October 1999, each of which was associated with different phenomena: a density current, solitary waves, and downward propagating waves from a low-level jet. In this study, we focus on the first event, the density current and its associated intermittent turbulence. As the cold density current propagated through the CASES-99 site, eddy motions in the upper part of the density current led to periodic overturning of the stratified flow, local thermal instability and a downward diffusion of turbulent mixing. Propagation of the density current induced a secondary circulation. The descending motion following the head of the density current resulted in strong stratification, a sharp reduction in the turbulence, and a sudden increase in the wind speed. As the wind surge propagated toward the surface, shear instability generated upward diffusion of turbulent mixing. We demonstrate in detail that the height and sequence of the local thermal and shear instabilities associated with the dynamics of the density current are responsible for the apparent intermittent turbulence