68 research outputs found

    Comparative Analysis of Gene Expression Data Reveals Novel Targets of Senescence-Associated microRNAs

    Get PDF
    In the last decades, cellular senescence is viewed as a complex mechanism involved in different processes, ranging from tumor suppression to induction of age-related degenerative alterations. Senescence-inducing stimuli are myriad and, recently, we and others have demonstrated the role exerted by microRNAs in the induction and maintenance of senescence, by the identification of a subset of Senescence-Associated microRNAs (SAmiRs) up-regulated during replicative or stress-induced senescence and able to induce a premature senescent phenotype when over-expressed in human primary cells. With the intent to find novel direct targets of two specific SAmiRs, SAmiR-494 and -486-5p, and cellular pathways which they are involved in, we performed a comparative analysis of gene expression profiles available in literature to select genes down-regulated upon replicative senescence of human primary fibroblasts. Among them, we searched for SAmiR’s candidate targets by analyzing with different target prediction algorithms their 3’UTR for the presence of SAmiR-binding sites. The expression profiles of selected candidates have been validated on replicative and stress-induced senescence and the targeting of the 3’UTRs was assessed by luciferase assay. Results allowed us to identify Cell Division Cycle Associated 2 (CDCA2) and Inhibitor of DNA binding/differentiation type 4 (ID4) as novel targets of SAmiR-494 and SAmiR-486-5p, respectively. Furthermore, we demonstrated that the over-expression of CDCA2 in human primary fibroblasts was able to partially counteract etoposide-induced senescence by mitigating the activation of DNA Damage Response

    Psoriasis Features in Patients with Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Psoriasis and inflammatory bowel diseases (IBD) share common pathways based on immune dysregulation with an important role of tumour necrosis factor-α and Th17 cells, as well as the genetic background. Several studies showed an increased prevalence of psoriasis in IBD patients. However, data regarding psoriasis features in IBD patients are still lacking. AIM: We aimed to conduct an observational study to assess psoriasis clinical features and its severity in a group of patients with IBD. METHODS: Dermatological assessment was performed consecutively in 200 IBD patients (123 with CD and 77 with UC) attending the IBD Care Centre of Gastroenterology at the University of Naples Federico II from 2015 to 2016. RESULTS: A group of 32 from 200 IBD patients (16%) had a familiar history positive for psoriasis, whereas, medical history and dermatologic examination revealed that 18 (9%) IBD patients were affected by psoriasis: 11 out of these 18 subjects (61.2%) had CD, and 7 had UC (38.2%); no significant differences were found between CD and UC groups. Concerning psoriasis severity, the mean psoriasis area severity index score was 3.7. CONCLUSION: This one-year retrospective study showed that psoriasis and IBD both require the use of immunosuppressive drugs so; we can count on a better treatment outcome for both diseases

    New CXCR4 Antagonist Peptide R (Pep R) Improves Standard Therapy in Colorectal Cancer

    Get PDF
    he chemokine receptor CXCR4 is overexpressed and functional in colorectal cancer. To investigate the role of CXCR4 antagonism in potentiating colon cancer standard therapy, the new peptide CXCR4 antagonist Peptide R (Pep R) was employed. Human colon cancer HCT116 xenograft-bearing mice were treated with chemotherapeutic agents (CT) 5-Fluorouracil (5FU) and oxaliplatin (OX) or 5FU and radio chemotherapy (RT-CT) in the presence of Pep R. After two weeks, CT plus Pep R reduced by 4-fold the relative tumor volume (RTV) as compared to 2- and 1.6-fold reductions induced, respectively, by CT and Pep R. In vitro Pep R addition to CT/RT-CT impaired HCT116 cell growth and further reduced HCT116 and HT29 clonal capability. Thus, the hypothesis that Pep R could target the epithelial mesenchyme transition (EMT) process was evaluated. While CT decreased ECAD and increased ZEB-1 and CD90 expression, the addition of Pep R restored the pretreatment expression. In HCT116 and HT29 cells, CT/RT-CT induced a population of CD133+CXCR4+ cells, supposedly a stem-resistant cancer cell population, while Pep R reduced it. Taken together, the results showed that targeting CXCR4 ameliorates the effect of treatment in colon cancer through inhibition of cell growth and reversal of EMT treatment-induced markers, supporting further clinical studies

    Combination of dl922-947 Oncolytic Adenovirus and G-Quadruplex Binders Uncovers Improved Antitumor Activity in Breast Cancer

    No full text
    G-quadruplexes (G4s) are nucleic secondary structures characterized by G-tetrads. G4 motif stabilization induces DNA damage and cancer cell death; therefore, G4-targeting small molecules are the focus of clinical investigation. DNA destabilization induced by G4 ligands might potentiate the anticancer activity of agents targeting DNA or inhibiting its repair such as oncolytic viruses. This study represents the first approach combining G4 ligands, BRACO-19 (B19), pyridostatin (PDS), and the adenovirus dl922-947 in breast cancer cells. We demonstrated that G4 binders and dl922-947 induce cytotoxicity in breast cancer cells (MDA-MB-231 and MCF-7) and at higher doses in other neoplastic cell lines of thyroid (BHT-101 cells) and prostate (PC3 cells). G4 binders induce G4 motifs distributed in the S and G2/M phases in MCF-7 cells. G4 binder/dl922-947 combination increases cell cytotoxicity and the accumulation in subG0/G1. Indeed, G4 binders favor viral entry and replication with no effect on coxsackie and adenovirus receptor. Notably, dl922-947 induces G4 motifs and its combination with PDS potentiates this effect in MCF-7 cells. The agents alone or in combination similarly enhanced cell senescence. Additionally, PDS/dl922-947 combination inactivates STING signaling in MDA-MB-231 cells. Our results suggest that G4 binder/virotherapy combination may represent a novel therapeutic anticancer approach

    Cross Talk of Macrophages with Tumor Microenvironment Cells and Modulation of Macrophages in Cancer by Virotherapy

    No full text
    Cellular compartments constituting the tumor microenvironment including immune cells, fibroblasts, endothelial cells, and mesenchymal stromal/stem cells communicate with malignant cells to orchestrate a series of signals that contribute to the evolution of the tumor microenvironment. In this study, we will focus on the interplay in tumor microenvironment between macrophages and mesenchymal stem cells and macrophages and fibroblasts. In particular, cell–cell interaction and mediators secreted by these cells will be examined to explain pro/anti-tumor phenotypes induced in macrophages. Nonetheless, in the context of virotherapy, the response of macrophages as a consequence of treatment with oncolytic viruses will be analyzed regarding their polarization status and their pro/anti-tumor response

    History of how viruses can fight cancer: From the miraculous healings to the approval of oncolytic viruses

    No full text
    : Since the nineteenth century, several reports in the historical medical literature emphasized that, occasionally, cancer patients showed a clinical remission, called "Saint Peregrine tumor" as a result of natural infections. Moreover, additional evidence indicated that viruses show a tropism toward cancer cells, leading to the discovery of oncolytic activity of several viruses, called oncolytic viruses (OVs). With the technological and scientific advancements, the advent of rodent models, the establishment of in vitro cell lines, the introduction of methods for virus propagation, several attempts through the 1950s and 1970s have been made to increase OVs specificity, efficacy and safety; however, inconclusive/negative results have been reached and many researchers abandoned the field. Only in the later 1990s, the genetic engineering and the recombinant DNA techniques that allowed the generation of potent, specific and safe OVs and a better understanding of cancer cells renewed the interest in virotherapy. Currently, virotherapy represents a cancer therapeutic strategy based on the use of OVs that selectively infect and lyse cancer cells, without harming normal cells. Over the past years, several "natural" and "genetic engineered" viruses, have been investigated in clinical studies and some of them revealed encouraging results. Recently, the clinical use of OVs has also been supported by the immune stimulatory property of OVs against tumor cells. Here, we analyze the early oncolytic virotherapy before genetic engineering to highlight the relevant progresses reached, and the mechanism to stimulate host immune response, a significant challenge in current virotherapy field

    Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5-S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity

    No full text
    Oxidative stress is one of the underlying mechanisms of the toxic effects exerted by mercury (Hg) on human health. Several antioxidant compounds, including the olive oil phenol hydroxytyrosol (HT), were investigated for their protective action. Recently, we have reported that 5-S-lipoylhydroxytyrosol (Lipo-HT) has shown increased antioxidant activities compared to HT and exerted potent protective effects against reactive oxygen species (ROS) generation and oxidative damage in human hepatocellular carcinoma HepG2 cell lines. In this study, the effects of Lipo-HT and HT on oxidative alterations of human erythrocytes induced by exposure to 40 μM HgCl2 were comparatively evaluated. When administered to the cells, Lipo-HT (5–20 μM) proved nontoxic and it decreased the Hg-induced generation of ROS, the hemolysis, and the depletion of intracellular GSH levels. At all tested concentrations, Lipo-HT exhibited higher ability to counteract Hg-induced cytotoxicity compared to HT. Model studies indicated the formation of a mercury complex at the SH group of Lipo-HT followed by a redox reaction that would spare intracellular GSH. Thus, the enhanced erythrocyte protective action of Lipo-HT from Hg-induced damage with respect to HT is likely due to an effective chelating and reducing ability toward mercury ions. These findings encourage the use of Lipo-HT in nutraceutical strategies to contrast heavy metal toxicity in humans

    Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia

    No full text
    The "Acute Myeloid Leukemia with gene mutations'' group includes mutations in Nucleophosmin 1(NPM1) that is an abundant multifunctional protein with chaperon functions. This protein also takes part to rRNA maturation in ribosome biogenesis, tumor suppression and nucleolar stress response. Mutations of NPM1 associated to AML present in its C-terminal domain (CTD) unable its correct folding and confer it an aberrant cytoplasmatic localization (NPMc+). AML cells with NPM1 mutations retain a certain amount of wt NPM1 in the nucleolus and since NPM1 acts as a hub protein, the nucleolus of AML cells are more vulnerable with respect to cells expressing only wt NPM1. Thus, interfering with the levels or the oligomerization status of NPM1 may influence its capability to properly build up the nucleolus in AML cells. Our biophysical recent results demonstrated that AML-CTDs contain regions prone to amyloid aggregation and, herein, we present results oriented to exploit this amylodogenesis in a potential therapeutic way. We evaluated the different ability of two small molecules to enhance amyloid aggregation through complementary biophysical approaches as fluorescence and Circular Dichroism spectroscopies, Scanning Electron Microscopy and cell-viability assays, to evaluate the cytoxicity of these molecules in AML cells lines. These findings could pave the way into molecular mechanisms of NPM1c and in novel therapeutic routes toward AML progression
    • …
    corecore