39 research outputs found

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Protease-activated receptor-2 (PAR-2) in the rat gastric mucosa: immunolocalization and facilitation of pepsin/pepsinogen secretion

    No full text
    1. Agonists of protease-activated receptor-2 (PAR-2) trigger neurally mediated mucus secretion accompanied by mucosal cytoprotection in the stomach. The present study immunolocalized PAR-2 in the rat gastric mucosa and examined if PAR-2 could modulate pepsin/pepsinogen secretion in rats. 2. PAR-2-like immunoreactivity was abundant in the deep regions of gastric mucosa, especially in chief cells. 3. The PAR-2 agonist SLIGRL-NH(2), but not the control peptide LSIGRL-NH(2), administered i.v. repeatedly at 0.3 – 1 μmol kg(−1), four times in total, significantly facilitated gastric pepsin secretion, although a single dose produced no significant effect. 4. The PAR-2-mediated gastric pepsin secretion was resistant to omeprazole, N(G)-nitro-L-arginine methyl ester (L-NAME) or atropine, and also to ablation of sensory neurons by capsaicin. 5. Our study thus provides novel evidence that PAR-2 is localized in mucosal chief cells and facilitates gastric pepsin secretion in the rats, most probably by a direct mechanism

    Suppression of pancreatitis-related allodynia/hyperalgesia by proteinase-activated receptor-2 in mice

    No full text
    1. Proteinase-activated receptor-2 (PAR2), a receptor activated by trypsin and tryptase, is abundantly expressed in the gastrointestinal tract including the C-fiber terminal, and might play a role in processing of visceral pain. In the present study, we examined and characterized the roles of PAR2 in pancreatitis-related abdominal hyperalgesia/allodynia in mice. 2. Caerulein, administered i.p. once, caused a small increase in abdominal sensitivity to stimulation with von Frey hairs, without causing pancreatitis, in PAR2-knockout (KO) mice, but not wild-type (WT) mice. 3. Caerulein, given hourly six times in total, caused more profound abdominal hyperalgesia/allodynia in PAR2-KO mice, as compared with WT mice, although no significant differences were detected in the severity of pancreatitis between the KO and WT animals. 4. The PAR2-activating peptide, 2-furoyl-LIGRL-NH(2), coadministered repeatedly with caerulein six times in total, abolished the caerulein-evoked abdominal hyperalgesia/allodynia in WT, but not PAR2-KO, mice. Repeated doses of 2-furoyl-LIGRL-NH(2) moderately attenuated the severity of caerulein-induced pancreatitis in WT animals. 5. Our data from experiments using PAR2-KO mice provide evidence that PAR2 functions to attenuate pancreatitis-related abdominal hyperalgesia/allodynia without affecting pancreatitis itself, although the PAR2AP applied exogenously is not only antinociceptive but also anti-inflammatory

    In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse

    No full text
    1. Protease-activated receptors (PARs) 1 and 2 modulate the gastric and intestinal smooth muscle motility in vitro. In the present study, we examined if activation of PAR-2 and PAR-1 could alter gastrointestinal transit in mice. 2. Intraperitoneal administration of the PAR-2-activating peptide SLIGRL-NH(2), but not the inactive control LSIGRL-NH(2), at 1–5 μmol kg(−1), in combination with the aminopeptidase inhibitor amastatin at 2.5 μmol kg(−1), facilitated gastrointestinal transit in a dose-dependent manner. The human PAR-1-derived peptide SFLLR-NH(2) and the specific PAR-1 agonist TFLLR-NH(2), but not the inactive control FSLLR-NH(2), at 2.5–10 μmol kg(−1), in combination with amastatin, also promoted gastrointestinal transit. 3. The Ca(2+)-activated, small conductance K(+) channel inhibitor apamin at 0.01 μmol kg(−1) significantly potentiated the actions of SLIGRL-NH(2) and TFLLR-NH(2) at subeffective doses. 4. The increased gastrointestinal transit exerted by either SLIGRL-NH(2) at 5 μmol kg(−1) or TFLLR-NH(2) at 10 μmol kg(−1) was completely abolished by the L-type Ca(2+) channel inhibitor verapamil at 61.6 μmol kg(−1). In contrast, the tyrosine kinase inhibitor genistein at 18.5 μmol kg(−1) failed to modify the effects of the agonists for PAR-2 or PAR-1. 5. These findings demonstrate that PAR-1 and PAR-2 modulate gastrointestinal transit in mice in vivo. Our data also suggest that the PAR-1-and PAR-2-mediated effects are modulated by apamin-sensitive K(+) channels and are dependent on activation of L-type Ca(2+) channels, but independent of tyrosine kinase. Our study thus provides novel evidence for the physiological and/or pathophysiological roles of PARs 1 and 2 in the digestive systems, most probably during inflammation

    Prevalence and Genetic Diversity of Bartonella Species Isolated from Wild Rodents in Japan▿

    No full text
    Here, we describe for the first time the prevalence and genetic properties of Bartonella organisms in wild rodents in Japan. We captured 685 wild rodents throughout Japan (in 12 prefectures) and successfully isolated Bartonella organisms from 176 of the 685 rodents (isolation rate, 25.7%). Those Bartonella isolates were all obtained from the rodents captured in suburban areas (rate, 51.8%), but no organism was isolated from the animals captured in city areas. Sequence analysis of rpoB and gltA revealed that the Bartonella isolates obtained were classified into eight genetic groups, comprising isolates closely related to B. grahamii (A-I group), B. tribocorum and B. elizabethae (B-J group), B. tribocorum and B. rattimassiliensis (C-K group), B. rattimassiliensis (D-L group), B. phoceensis (F-N group), B. taylorii (G-O group), and probably two additional novel Bartonella species groups (E-M and H-P). B. grahamii, which is one of the potential causative agents of human neuroretinitis, was found to be predominant in Japanese rodents. In terms of the relationships between these Bartonella genetic groups and their rodent species, (i) the A-I, E-M, and H-P groups appear to be associated with Apodemus speciosus and Apodemus argenteus; (ii) the C-K, D-L, and F-N groups are likely implicated in Rattus rattus; (iii) the B-J group seems to be involved in Apodemus mice and R. rattus; and (iv) the G-O group is probably associated with A. speciosus and Clethrionomys voles. Furthermore, dual infections with two different genetic groups of bartonellae were found in A. speciosus and R. rattus. These findings suggest that the rodent in Japan might serve as a reservoir of zoonotic Bartonella infection
    corecore