30 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Electrochemical Synthesis of Zn-Al-based Layered Double Hydroxides Intercalated with 4-hydroxy-3-methoxy Cinnamic Acid as a UV-ray Absorbent

    Get PDF
    One-step electrochemical synthesis of Zn-Al-based layered double hydroxides intercalated with 4-hydroxy-3-methoxy cinnamic acid as a UV-ray absorbent (Zn-Al/HMCA LDH) was attempted in this study. Among various preparation conditions, it was confirmed that HMCA was intercalated into the interlayers of Zn-Al-based layered double hydroxide (Zn-Al LDH) by potentiometric electrolysis at -1.5 V for 1 h at RT. The Zn-Al/HMCA LDH films prepared on a Pt plate showed an excellent UV-ray absorption property.ナノダイナミクス国際シンポジウム 平成20年1月67日(木) 於長崎大学Nagasaki Symposium on Nano-Dynamics 2009 (NSND2009), January 27, 2043, Nagasaki University, Nagasaki, Japan, Poster Presentatio

    Development of heterotopic transplantation of the testis with the epididymis to evaluate an aspect of testicular immunology in rats

    No full text
    <div><p>Transplantation of testicular cells and tissues has been studied for the investigation of immunology of the testis, which is an immunologically privileged organ. However, reports of transplant of the testis at organ level have been extremely limited because of technical difficulties of the orthotopic testis transplantation (OTT) in experimental animals. In the present study, we developed a new and simple model of the heterotopic testis transplantation (HTT), which is donor testis transplantation into the cervical region of recipients, in a syngeneic model in rats [donor Lewis (LEW) graft to LEW recipient]. The duration of HTT was significantly shorter and success rate higher than that of OTT. To histologically evaluate HTT, the local immune responses were compared among the syngeneic model, an acute rejection allogeneic model [donor Augustus Copenhagen Irish (ACI) graft to LEW recipient] and a chronic rejection allogeneic model (donor F344 graft to LEW recipient) at postoperative day 3. We found that allogeneic ACI grafts resulted in mild and not severe orchitic lesions, whereas immune responses of allogeneic F344 grafts seemed intact and were not significantly different from those of syngeneic LEW grafts. These results suggest that our new operative procedure will be useful in future for the investigation of the testicular immunology.</p></div
    corecore