237 research outputs found

    Differential quantification of CYP2D6 gene copy number by four different quantitative real-time PCR assays

    Get PDF
    Copy number variations (CNVs) in the CYP2D6 gene contribute to interindividual variation in drug metabolism. As the most common duplicated allele in Asian populations is the nonfunctional CYP2D6*36 allele, the goal of this study was to identify CNV assays that can differentiate between multiple copies of the CYP2D6*36 allele and multiple copies of other CYP2D6 alleles. We determined CYP2D6 gene copy numbers in 32 individuals with known CYP2D6 CNVs from the Coriell Japanese-Chinese panel using four quantitative real-time PCR assays. These assays target different regions of the CYP2D6 gene: 5'-flanking region, intron 2, intron 6, and exon 9 (Ex9). The specific target site of the Ex9 assay was verified by sequencing the PCR amplicon. Three of the CYP2D6 CNV assays (5'-flanking region, intron 2, and intron 6) estimated CYP2D6 copy numbers that were concordant for all 32 individuals. However, the Ex9 assay was concordant in only 10 of 32 samples. The 10 concordant samples did not contain any CYP2D6*36 alleles and the 22 discordant samples contained at least one CYP2D6*36 allele. In addition, the Ex9 assay accurately quantified all of the non-CYP2D6*36 alleles in all samples. Ex9 amplicon sequencing indicated that it targets a region of CYP2D6 exon 9 that undergoes partial gene-conversion in the CYP2D6*36 allele. In conclusion, CYP2D6 Ex9 CNV assay can be used to determine the copy number of non-CYP2D6*36 alleles. Selective amplification of non-CYP2D6*36 sequence by the Ex9 assay should be useful in determining the number of functional copies of CYP2D6 in Asian populations

    The origin of infra-slow oscillations of oxygenated hemoglobin observed in functional near-infrared spectroscopy

    Get PDF
    There is increasing interest in the intrinsic activity of the resting brain, especially the activity slower than 0.1Hz (i.e., low-frequency oscillations, or LFOs). To investigate the origin of LFOs observed in functional near-infrared spectroscopy (fNIRS), we recorded multichannel fNIRS and electroencephalography (EEG) from the frontal cortex of 11 healthy young volunteers in the resting state. Electrocardiography (ECG), electro-oculography and respiration were also measured. Synchronous oscillations of oxy-hemoglobin (oxy-Hb) around 1.0Hz were detected in all fNIRS channels, and their frequency was consistent with a peak frequency of ECG, suggesting the changes of cerebral blood flow due to heart beats. In addition, oxy-Hb oscillations around 0.1Hz (i.e., LFOs) appeared in the fNIRS. The channels where LFOs appeared differed among the subjects, and the LFOs appeared or disappeared even in the same fNIRS channels. The appearance of LFOs in fNIRS channels was significantly higher when the LFOs appeared on the EEG in the adjacent EEG electrodes compared to when LFOs did not appear on EEG. The amplitude and coherence (synchronicity) of the LFOs were increased by changing the subjects' position from dorsal to the sitting position in both fNIRS and EEG, and the coherence in particular was increased in the homologous fNIRS channels on the bilateral hemispheres. These results suggest that LFOs of oxy-Hb couple with resting-state EEG activity

    Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored protein expression

    Get PDF
    Glycosylphosphatidylinositol (GPI)-anchored proteins play crucial roles in various enzyme activities, cell signaling and adhesion, and immune responses. While the molecular mechanism underlying GPI-anchored protein biosynthesis has been well studied, the role of zinc transport in this process has not yet been elucidated. Zn transporter (ZNT) proteins mobilize cytosolic zinc to the extracellular space and to intracellular compartments. Here, we report that the early secretory pathway ZNTs [ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7-ZNT7 homodimers (ZNT7)], which supply zinc to the lumen of the early secretory pathway compartments are essential for GPI-anchored protein expression on the cell surface. We show, using overexpression and gene disruption/re-expression strategies in cultured human cells, that loss of ZNT5-6 and ZNT7 zinc transport functions results in significant reduction in GPI-anchored protein levels similar to that in mutant cells lacking phosphatidylinositol glycan anchor biosynthesis (PIG) genes. Furthermore, medaka fish with disrupted Znt5 and Znt7 genes show touch-insensitive phenotypes similar to zebrafish Pig mutants. These findings provide a previously unappreciated insight into the regulation of GPI-anchored protein expression and protein quality control in the early secretory pathway

    Quantitative measurement of airway dimensions using ultra-high resolution computed tomography

    Get PDF
    Background: Quantitative measurement of airway dimensions using computed tomography (CT) is performed in relatively larger airways due to the limited resolution of CT scans. Nevertheless, the small airway is an important pathological lesion in lung diseases such as chronic obstructive pulmonary disease (COPD) and asthma. Ultra-high resolution scanning may resolve the smaller airway, but its accuracy and limitations are unclear. Methods: Phantom tubes were imaged using conventional (512 × 512) and ultra-high resolution (1024 × 1024 and 2048 × 2048) scans. Reconstructions were performed using the forward-projected model-based iterative reconstruction solution (FIRST) algorithm in 512 × 512 and 1024 × 1024 matrix scans and the adaptive iterative dose reduction 3D (AIDR-3D) algorithm for all scans. In seven subjects with COPD, the airway dimensions were measured using the 1024 × 1024 and 512 × 512 matrix scans. Results: Compared to the conventional 512 × 512 scan, variations in the CT values for air were increased in the ultra-high resolution scans, except in the 1024×1024 scan reconstructed through FIRST. The measurement error of the lumen area of the tube with 2-mm diameter and 0.5-mm wall thickness (WT) was minimal in the ultra-high resolution scans, but not in the conventional 512 × 512 scan. In contrast to the conventional scans, the ultra-high resolution scans resolved the phantom tube with ≥ 0.6-mm WT at an error rate of < 11%. In seven subjects with COPD, the WT showed a lower value with the 1024 × 1024 scans versus the 512 × 512 scans. Conclusions: The ultra-high resolution scan may allow more accurate measurement of the bronchioles with smaller dimensions compared with the conventional scan

    Viral delivery of L1CAM promotes axonal extensions by embryonic cerebral grafts in mouse brain

    Get PDF
    遺伝子治療によるホスト脳の環境最適化が細胞移植効果を高める --ホスト脳へのL1CAMの強制発現によるマウス胎仔脳移植片の軸索伸長促進効果--. 京都大学プレスリリース. 2023-03-24.Combining cell transplantation and gene therapy to enhance axonal outgrowth in the central nervous system. 京都大学プレスリリース. 2023-04-06.Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy

    Associations of pulmonary and extrapulmonary computed tomographic manifestations with impaired physical activity in symptomatic patients with chronic obstructive pulmonary disease

    Get PDF
    In patients with chronic obstructive pulmonary disease (COPD), emphysema, airway disease, and extrapulmonary comorbidities may cause various symptoms and impair physical activity. To investigate the relative associations of pulmonary and extrapulmonary manifestations with physical activity in symptomatic patients, this study enrolled 193 patients with COPD who underwent chest inspiratory/expiratory CT and completed COPD assessment test (CAT) and the Life-Space Assessment (LSA) questionnaires to evaluate symptom and physical activity. In symptomatic patients (CAT ≥ 10, n = 100), emphysema on inspiratory CT and air-trapping on expiratory CT were more severe and height-adjusted cross-sectional areas of pectoralis muscles (PM index) and adjacent subcutaneous adipose tissue (SAT index) on inspiratory CT were smaller in those with impaired physical activity (LSA < 60) than those without. In contrast, these findings were not observed in less symptomatic patients (CAT < 10). In multivariable analyses of the symptomatic patients, severe air-trapping and lower PM index and SAT index, but not CT-measured thoracic vertebrae bone density and coronary artery calcification, were associated with impaired physical activity. These suggest that increased air-trapping and decreased skeletal muscle and subcutaneous adipose tissue quantity are independently associated with impaired physical activity in symptomatic patients with COPD

    Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation

    Get PDF
    Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway

    Five-dimensional Black Hole and Particle Solution with Non-Abelian Gauge Field

    Full text link
    We study the 5-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spherically symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically "quasi-Minkowski", "quasi anti-de Sitter", or "quasi de Sitter" spacetime depending on the sign of a cosmological constant. Since there is no singularity except for the origin which is covered by an event horizon, we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also present a singularity-free particle-like solution and a non-trivial black hole solution numerically. Those solutions correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in the 4-dimensions. We analyze their asymptotic behaviors, spacetime structures and thermodynamical properties. We show that there is a set of stable solutions if a cosmological constant is negative.Comment: 17 pages, 17 figures, submitted to PR
    corecore