81 research outputs found

    A Defined Network of Fast-Spiking Interneurons in Orbitofrontal Cortex: Responses to Behavioral Contingencies and Ketamine Administration

    Get PDF
    Orbitofrontal cortex (OFC) is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS) interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC–FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states

    Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

    Get PDF
    Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.00

    Increased nerve growth factor expression in the synovial tissues of patients with rotator cuff tears

    Get PDF
    BACKGROUND: Rotator cuff tears (RCTs) are often associated with severe shoulder pain. Non-steroidal anti-inflammatory drugs, not recommended for long-term use, do not effectively manage RCT-induced pain, resulting in reduced quality of life. To improve management, a better understanding of the fundamental properties of RCT pain is needed. Here, we aimed to compare the expression levels of nerve growth factor (NGF) and cyclooxygenase-2 (COX-2) mRNA in the synovial tissues of patients with RCT-induced pain and patients with non-painful recurrent shoulder dislocation (RSD). METHODS: The study included 32 patients with RCT who underwent arthroscopic rotator cuff repair and 28 patients with non-painful RSD who underwent arthroscopic Bankart repair. Synovial tissue samples were harvested from subacromial bursa and rotator interval of RCT patients and from the rotator interval of RSD patients. Samples were analyzed quantitatively expression levels for NGF and COX2 mRNA and NGF protein. RESULTS: NGF mRNA and protein levels were significantly higher in the rotator interval of RCT patients than in the rotator interval of RSD patients (p = 0.0017, p = 0.012, respectively), while COX2 mRNA levels did not differ significantly between the two patient groups. In RCT patients, COX2 mRNA was more highly expressed in the rotator interval than in the subacromial bursa (p = 0.038), whereas the mRNA and protein levels of NGF did not differ between the two tissues. The expression of NGF mRNA in the synovium of the rotator interval was significantly correlated with the numeric rating scale of pain (ρ = 0.38, p = 0.004). CONCLUSION: NGF mRNA and protein levels were elevated in patients with painful RCT compared with those in patients with non-painful RSD, whereas COX-2 levels were comparable in the two patient groups. These findings provide insights into novel potential strategies for clinical management of RCT

    A wireless multi-channel neural amplifier for freely moving animals

    Get PDF
    Conventional neural recording systems restrict behavioral experiments to a flat indoor environment compatible with the cable that tethers the subject to recording instruments. To overcome these constraints, we developed a wireless multi-channel system for recording neural signals from rats. The device takes up to 64 voltage signals from implanted electrodes, samples each at 20 kHz, time-division multiplexes them into one signal and transmits that output by radio frequency to a receiver up to 60 m away. The system introduces <4 μV of electrode-referred noise, comparable to wired recording systems, and outperforms existing rodent telemetry systems in channel count, weight and transmission range. This allows effective recording of brain signals in freely behaving animals. We report measurements of neural population activity taken outdoors and in tunnels. Neural firing in the visual cortex was relatively sparse, correlated even across large distances and was strongly influenced by locomotor activity
    corecore