154 research outputs found

    Sesamin catechol glucuronides exert anti-inflammatory effects by suppressing IFN-β and iNOS expression through the deconjugation in macrophage-like J774.1 cells

    Get PDF
    Sesamin, a representative sesame lignan, has health-promoting activities. Sesamin is converted into catechol derivatives and further into their glucuronides or sulfates in vivo, whereas the biological activities of sesamin metabolites remain unclear. We examined the inhibitory effects of sesamin metabolites on the lipopolysaccharide (LPS)-induced NO production in mouse macrophage-like J774.1 cells and found that a mono-catechol derivative SC1, (7α,7'α,8α,8'α)-3,4-dihydroxy-3',4'-methylenedioxy-7,9':7',9-diepoxylignane, has a much higher activity than sesamin and other metabolites. The inhibitory effects of SC1 glucuronides were time-dependently enhanced, associated with the intracellular accumulation of SC1 and the methylated form. SC1 glucuronides and SC1 attenuated the expression of inducible NO synthase (iNOS) and upstream interferon-β (IFN-β) in the LPS-stimulated macrophages. The inhibitory effects of SC1 glucuronides against NO production were canceled by the β-glucuronidase inhibitor and enhanced by the catechol- O-methyltransferase inhibitor. Our results suggest that SC1 glucuronides exert the anti-inflammatory effects by inhibiting the IFN-β/iNOS signaling through macrophage-mediated deconjugation

    New dimeric flavans from gambir, an extract of Uncaria gambir

    Get PDF
    Three new dimeric flavans, catechin-(4 alpha -&#62; 8)-ent-epicatechin (7), gambirflavan D1 (8), and gambirflavan D2 (9), were isolated from gambir (an extract from the leaves and young twigs of Uncaria gambir), and their structures were determined based on spectroscopic and chemical data.</p

    Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk-1 positive cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Induced pluripotent stem (iPS) cells are the novel stem cell population induced from somatic cells. It is anticipated that iPS will be used in the expanding field of regenerative medicine. Here, we investigated whether implantation of fetal liver kinase-1 positive (Flk-1<sup>+</sup>) cells derived from iPS cells could improve angiogenesis in a mouse hind limb model of ischemia.</p> <p>Results</p> <p>Flk-1<sup>+ </sup>cells were induced from iPS cells after four to five days of culture. Hind limb ischemia was surgically induced and sorted Flk-1<sup>+ </sup>cells were directly injected into ischemic hind limbs of athymic nude mice. Revascularization of the ischemic hind limb was accelerated in mice that were transplanted with Flk-1<sup>+ </sup>cells compared with control mice, which were transplanted with vehicle, as evaluated by laser Doppler blood flowmetry. Transplantation of Flk-1<sup>+ </sup>cells also increased expression of VEGF mRNA in ischemic tissue compared to controls.</p> <p>Conclusions</p> <p>Direct local implantation of iPS cell-derived Flk-1<sup>+ </sup>cells would salvage tissues from ischemia. These data indicate that iPS cells could be valuable in the therapeutic induction of angiogenesis.</p

    Doppler ultrasound findings correlate with tissue vascularity and inflammation in surgical pathology specimens from patients with small intestinal Crohn’s disease

    Get PDF
    BACKGROUND: Crohn’s disease (CD) is routinely evaluated using clinical symptoms, laboratory variables, and the CD activity index (CDAI). However, clinical parameters are often nonspecific and do not precisely reflect the actual activity of CD small-intestinal lesions. The purposes of this prospective study were to compare color Doppler ultrasound (US) findings with histological findings from surgically resected specimens and confirm the hypothesis that color Doppler US can distinguish tissue inflammation and fibrosis. METHODS: Among 1764 consecutive patients who underwent color Doppler US examinations, 10 patients with CD (12 small-intestinal CD lesions) who underwent US examinations before elective small-intestine resection were evaluated in the present study. Areas of thickened intestinal walls were evaluated in terms of blood flow using color Doppler US imaging. The blood flow was semiquantitatively classified as “hyper-flow” and “hypo-flow” according to the Limberg score. Resected lesions were macroscopically and histopathologically processed. Inflammatory cell infiltration, fibrosis and vascularity were evaluated by myeloperoxidase (granulocytes), CD163 (macrophages), CD79a (B cells), CD3 (T cells), Masson’s trichrome (fibrosis), and factor VIII staining (vascular walls). All histopathological images were entered into virtual slide equipment and quantified using a quantitative microscopy integrated system (TissueMorph™). RESULTS: There were no significant differences in disease features or laboratory findings between “hypo-flow” lesions (n = 4) and “hyper-flow” lesions (n = 8). Histopathologically, “hyper-flow” lesions showed significantly greater bowel wall vascularity (factor VIII) (p = 0.047) and inflammatory cell infiltration, including CD163 macrophages (p = 0.008), CD3 T cells, and CD79a B cells (p = 0.043), than did “hypo-flow” lesions. There was no apparent association between the blood flow and CDAI. CONCLUSIONS: In this study, active CD lesions were macroscopically visible in surgical specimens of patients with increased blood flow on preoperative color Doppler US imaging. Additionally, these CD lesions exhibited significantly greater vascularity and numbers of inflammatory leukocytes microscopically. Color Doppler US may predict tissue inflammation and fibrosis in small-intenstinal CD lesions

    Evaluation of oral immunotherapy efficacy and safety by maintenance dose dependency: A multicenter randomized study

    Get PDF
    Background Generally, oral immunotherapy (OIT) aims for daily administration. Recently, the efficacy of treatment with OIT at a low dose has been reported. However, the optimal dose and the evaluation of dose-dependent OIT outcome have not been described. Methods A multicenter, parallel, open-labeled, prospective, non-placebo controlled, randomized study enrolled 101 Japanese patients for treatment with OIT. We hypothesized that target dose OIT would induce short-term unresponsiveness (StU) earlier than reduced dose OIT. StU was defined as no response to 6200 mg whole egg, 3400 mg milk, and 2600 mg wheat protein, as evaluated by oral food challenge after 2-week ingestion cessation. To compare the two doses of OIT efficacy, the maximum ingestion doses during the maintenance phase of OIT were divided into 100%-dose or 25%-dose groups against their target StU dose, respectively. A total of 51 patients were assigned to the 100%-dose group [hen's egg (HE) = 26, cow's milk (CM) = 13, wheat = 12] and 50 to the 25%-dose group (HE = 25, CM = 13, wheat = 12). Primary outcome was established by comparing StU at 1 year. Secondary outcome was StU at 2 years and established by comparing allergic symptoms and immunological changes. Results The year 1 StU rates (%) for the 100%- and 25%-dose groups were 26.9 vs. 20.0 (HE), 7.7 vs. 15.4 (CM), and 50.0 vs. 16.7 (wheat), respectively. The year 2 StU rates were 30.8 vs. 36.0 (HE), 7.7 vs. 23.1 (CM), and 58.3 vs. 58.3 (wheat), respectively. There were no statistically significant differences in StU between years 1 and 2. The total allergic symptom rate in the 25%-dose group was lower than that in the 100%-dose group for egg, milk, and wheat. Antigen-specific IgE levels for egg-white, milk, and wheat decreased at 12 months. Conclusions Reduced maintenance dose of egg OIT showed similar therapeutic efficacy to the target dose. However, we were not able to clearly demonstrate the efficacy, particularly for milk and wheat. Reducing the maintenance dose for eggs, milk, and wheat may effectively lower the symptoms associated with their consumption compared to the target OIT dose. Furthermore, aggressive reduction of the maintenance dose might be important for milk and wheat, compared to the 25%-dose OIT

    AGN number fraction in galaxy groups and clusters at z < 1.4 from the Subaru Hyper Suprime-Cam survey

    Full text link
    One of the key questions on active galactic nuclei (AGN) in galaxy clusters is how AGN could affect the formation and evolution of member galaxies and galaxy clusters in the history of the Universe. To address this issue, we investigate the dependence of AGN number fraction (fAGNf_{\rm AGN}) on cluster redshift (zclz_{\rm cl}) and distance from the cluster center (R/R200R/R_{\rm 200}). We focus on more than 27,000 galaxy groups and clusters at 0.1<zcl<1.40.1 < z_{\rm cl} < 1.4 with more than 1 million member galaxies selected from the Subaru Hyper Suprime-Cam. By combining various AGN selection methods based on infrared (IR), radio, and X-ray data, we identify 2,688 AGN. We find that (i) fAGNf_{\rm AGN} increases with zclz_{\rm cl} and (ii) fAGNf_{\rm AGN} decreases with R/R200R/R_{\rm 200}. The main contributors to the rapid increase of fAGNf_{\rm AGN} towards high-zz and cluster center are IR- and radio-selected AGN, respectively. Those results indicate that the emergence of the AGN population depends on the environment and redshift, and galaxy groups and clusters at high-zz play an important role in AGN evolution. We also find that cluster-cluster mergers may not drive AGN activity in at least the cluster center, while we have tentative evidence that cluster-cluster mergers would enhance AGN activity in the outskirts of (particularly massive) galaxy clusters.Comment: 16 pages, 21 figures, and 2 tables, accepted for publication in PAS

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene
    corecore