60 research outputs found

    Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus

    Get PDF
    BACKGROUND:Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. DESIGN:Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. RESULTS:All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. CONCLUSIONS:These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated

    A Case Control Association Study and Cognitive Function Analysis of Neuropilin and Tolloid-Like 1 Gene and Schizophrenia in the Japanese Population

    Get PDF
    BACKGROUND: Using a knock-out mouse model, it was shown that NETO1 is a critical component of the NMDAR complex, and that loss of Neto1 leads to impaired hippocampal long term potentiation and hippocampal-dependent learning and memory. Moreover, hemizygosity of NETO1 was shown to be associated with autistic-like behavior in humans. PURPOSE OF THE RESEARCH: We examined the association between schizophrenia and the neuropilin and tolloid-like 1 gene (NETO1). First, we selected eight single nucleotide polymorphisms (SNPs) within the NETO1 locus, based on the Japanese schizophrenia genome wide association study (JGWAS) results and previously conducted association studies. These SNPs were genotyped in the replication sample comprised of 963 schizophrenic patients and 919 healthy controls. We also examined the effect of associated SNPs on scores in the Continuous Performance Test and the Wisconsin Card Sorting Test Keio version (schizophrenic patients 107, healthy controls 104). RESULTS: There were no significant allele-wise and haplotype-wise associations in the replication analysis after Bonferroni correction. However, in meta-analysis (JGWAS and replication dataset) three association signals were observed (rs17795324: p = 0.028, rs8098760: p = 0.017, rs17086492: p = 0.003). These SNPs were followed up but we could not detect the allele-specific effect on cognitive performance measured by the Continuous performance test (CPT) and Wisconsin Card Sorting test (WCST). MAJOR CONCLUSIONS: We did not detect evidence for the association of NETO1 with schizophrenia in the Japanese population. Common variants within the NETO1 locus may not increase the genetic risk for schizophrenia in the Japanese population. Additionally, common variants investigated in the current study did not affect cognitive performance, as measured by the CPT and WCST

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    Correction: Rapid Accumulation of Virulent Rift Valley Fever Virus in Mice from an Attenuated Virus Carrying a Single Nucleotide Substitution in the M RNA

    Get PDF
    Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates.Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice.These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus

    Anti-S1 MERS-COV IgY Specific Antibodies Decreases Lung Inflammation and Viral Antigen Positive Cells in the Human Transgenic Mouse Model

    No full text
    The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection

    Immunotherapeutic Efficacy of IgY Antibodies Targeting the Full-Length Spike Protein in an Animal Model of Middle East Respiratory Syndrome Coronavirus Infection

    No full text
    Identified in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often fatal acute respiratory illness in humans. No approved prophylactic or therapeutic interventions are currently available. In this study, we developed chicken egg yolk antibodies (IgY Abs) specific to the MERS-CoV spike (S) protein and evaluated their neutralizing efficiency against MERS-CoV infection. S-specific IgY Abs were produced by injecting chickens with the purified recombinant S protein of MERS-CoV at a high titer (4.4 mg/mL per egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated specific binding to the MERS-CoV S protein. In vitro neutralization of the generated IgY Abs against MERS-CoV was evaluated and showed a 50% neutralizing concentration of 51.42 μg/mL. In vivo testing using a human-transgenic mouse model showed a reduction of viral antigen positive cells in treated mice, compared to the adjuvant-only controls. Moreover, the lung cells of the treated mice showed significantly reduced inflammation, compared to the controls. Our results show efficient neutralization of MERS-CoV infection both in vitro and in vivo using S-specific IgY Abs. Clinical trials are needed to evaluate the efficiency of the IgY Abs in camels and humans
    corecore