6 research outputs found

    Dietary Lactoferrin Alleviates Age-Related Lacrimal Gland Dysfunction in Mice

    Get PDF
    BACKGROUND: Decrease in lacrimal gland secretory function is related to age-induced dry eye disease. Lactoferrin, the main glycoprotein component of tears, has multiple functions, including anti-inflammatory effects and the promotion of cell growth. We investigated how oral administration of lactoferrin affects age-related lacrimal dysfunction. METHODS AND FINDINGS: Twelve-month-old male C57BL/6Cr Slc mice were randomly divided into a control fed group and an oral lactoferrin treatment group. Tear function was measured at a 6-month time-point. After euthanasia, the lacrimal glands were subjected to histological examination with 8-hydroxy-2'-deoxyguanosine (8-OHdG) antibodies, and serum concentrations of 8-OHdG and hexanoyl-lysine adduct (HEL) were evaluated. Additionally, monocyte chemotactic protein-1(MCP-1) and tumor necrosis factor-α (TNF-α) gene expression levels were determined by real-time PCR. The volume of tear secretion was significantly larger in the treated group than in the control. Lactoferrin administration reduced inflammatory cell infiltration and the MCP-1 and TNF-α expression levels. Serum concentrations of 8-OHdG and HEL in the lactoferrin group were lower than those in the control group and were associated with attenuated 8-OHdG immunostaining of the lacrimal glands. CONCLUSION: Oral lactoferrin administration preserves lacrimal gland function in aged mice by attenuating oxidative damage and suppressing subsequent gland inflammation

    PKCλ regulates glucose-induced insulin secretion through modulation of gene expression in pancreatic β cells

    No full text
    Altered regulation of insulin secretion by glucose is characteristic of individuals with type 2 diabetes mellitus, although the mechanisms that underlie this change remain unclear. We have now generated mice that lack the λ isoform of PKC in pancreatic β cells (βPKCλ(–/–) mice) and show that these animals manifest impaired glucose tolerance and hypoinsulinemia. Furthermore, insulin secretion in response to high concentrations of glucose was impaired, whereas the basal rate of insulin release was increased, in islets isolated from βPKCλ(–/–) mice. Neither the β cell mass nor the islet insulin content of βPKCλ(–/–) mice differed from that of control mice, however. The abundance of mRNAs for Glut2 and HNF3β was reduced in islets of βPKCλ(–/–) mice, and the expression of genes regulated by HNF3β was also affected (that of Sur1 and Kir6.2 genes was reduced, whereas that of hexokinase 1 and hexokinase 2 genes was increased). Normalization of HNF3β expression by infection of islets from βPKCλ(–/–) mice with an adenoviral vector significantly reversed the defect in glucose-stimulated insulin secretion. These results indicate that PKCλ plays a prominent role in regulation of glucose-induced insulin secretion by modulating the expression of genes important for β cell function
    corecore