25 research outputs found

    A new meridian imaging spectrogarph for the auroral spectroscopy

    Get PDF
    Spectroscopic and monochromatic imaging observations of emissions in the upper atmosphere are mutually complementary. A meridian imaging auroral spectrograph (ASG) that can measure a spectrum in the visible region along a meridian has been developed for research on the auroral physics and the polar upper-atmosphere dynamics. Combination of a fast optical system inherited from a monochromatic all-sky imager, a grism as a dispersive element, and a cooled CCD camera has enabled a wide field-of-view of 180° along a meridian, spectral coverage of 420-730 nm, spectral resolution of 1.5-2.0 nm, and high sensitivity to be obtained. The absolute sensitivity over a full-image field was calibrated using a National Institute of Standards and Technology (NIST) traceable integrating sphere and determined to be 0.06 cts/s/R at a wavelength of 560 nm at the zenith. The ASG was installed at Longyearbyen in March 2000, and routine operation was started in the 2000/2001 winter season. An example of an auroral spectral image is presented in this report to demonstrate the performance of the ASG

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ⟨β⟩\left\langle \beta \right\rangle . The high ⟨β⟩\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    DECIGO and DECIGO pathfinder

    Full text link

    Students’ reports on stress during the simulation (Multiple answers possible).

    No full text
    <p>Students’ reports on stress during the simulation (Multiple answers possible).</p
    corecore