2 research outputs found

    Using spin to understand the formation of LIGO's black holes

    Full text link
    With the detection of four candidate binary black hole (BBH) mergers by the Advanced LIGO detectors thus far, it is becoming possible to constrain the properties of the BBH merger population in order to better understand the formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically, in contrast to isolated populations where stellar evolution is expected to induce BH spins preferentially aligned with the orbital angular momentum. In this work we propose a simple, model-agnostic approach to characterizing the spin properties of LIGO's BBH population. Using measurements of the effective spin of the binaries, which is LIGO's best constrained spin parameter, we introduce a simple parameter to quantify the fraction of the population that is isotropically distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of the population have been determined, we show how measurements of effective spin can be used to directly constrain the underlying BH spin magnitude distribution. Although we find that the majority of the current effective spin measurements are too small to be informative, with LIGO's four BBH candidates we find a slight preference for an underlying population with aligned spins over one with isotropic spins (with an odds ratio of 1.1). We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high confidence with tens of additional detections, although mixed populations may take significantly more detections to disentangle. We also derive preliminary spin magnitude distributions for LIGO's black holes, under the assumption of aligned or isotropic populations

    In Situ Hard X‑ray Photoelectron Study of O<sub>2</sub> and H<sub>2</sub>O Adsorption on Pt Nanoparticles

    No full text
    To improve the efficiency of Pt-based cathode catalysts in polymer electrolyte fuel cells, understanding of the oxygen reduction process at surfaces and interfaces in the molecular level is essential. In this study, H<sub>2</sub>O and O<sub>2</sub> adsorption and dissociation as the first step of the reduction process were investigated by in situ hard X-ray photoelectron spectroscopy (HAXPES). Pt 5d valence band and Pt 3d, Pt 4f core HAXPES spectra of Pt nanoparticles upon H<sub>2</sub>O and O<sub>2</sub> adsorption revealed that H<sub>2</sub>O adsorption has a negligible effect on the electronic structure of Pt, while O<sub>2</sub> adsorption has a significant effect, reflecting the weak and strong chemisorption of H<sub>2</sub>O and O<sub>2</sub> on the Pt nanoparticle, respectively. Combined with ab initio theoretical calculations, it is concluded that Pt 5d states responsible for Pt–O<sub>2</sub> bonding reside within 2 eV from the Fermi level
    corecore