5 research outputs found

    Determinants of Zika virus host tropism uncovered by deep mutational scanning

    No full text
    Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments
    corecore