289 research outputs found

    Achieving Adversarial Robustness via Sparsity

    Full text link
    Network pruning has been known to produce compact models without much accuracy degradation. However, how the pruning process affects a network's robustness and the working mechanism behind remain unresolved. In this work, we theoretically prove that the sparsity of network weights is closely associated with model robustness. Through experiments on a variety of adversarial pruning methods, we find that weights sparsity will not hurt but improve robustness, where both weights inheritance from the lottery ticket and adversarial training improve model robustness in network pruning. Based on these findings, we propose a novel adversarial training method called inverse weights inheritance, which imposes sparse weights distribution on a large network by inheriting weights from a small network, thereby improving the robustness of the large network

    Suppression of <i>TREX1</i> deficiency-induced cellular senescence and interferonopathies by inhibition of DNA damage response

    Get PDF
    TREX1 encodes a major DNA exonuclease and mutations of this gene are associated with type I interferonopathies in human. Mice with Trex1 deletion or mutation have shortened life spans accompanied by a senescence-associated secretory phenotype. However, the contribution of cellular senescence in TREX1 deficiency-induced type I interferonopathies remains unknown. We found that features of cellular senescence present in Trex1−/− mice are induced by multiple factors, particularly DNA damage. The cGAS-STING and DNA damage response pathways are required for maintaining TREX1 deletion-induced cellular senescence. Inhibition of the DNA damage response, such as with Checkpoint kinase 2 (CHK2) inhibitor, partially alleviated progression of type I interferonopathies and lupus-like features in the mice. These data provide insights into the initiation and development of type I interferonopathies and lupus-like diseases, and may help inform the development of targeted therapeutics

    Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment

    Get PDF
    An ultrafast and template-free method to synthesize three-dimensional (3D) hierarchical layered titanate microspherulite (TMS) particles with high surface area is reported. The synthesis makes use of an electrochemical spark discharge spallation (ESDS) process, during which a fast anodic reaction on the titanium surface creates a layer of titanium dioxide that instantly breaks down by the applied electrical field into the solution in the form of titanium oxide particles. The spalled particles readily react with the heated NaOH electrolyte to form the titanate particles. A typical as-prepared TMS with a diameter of 0.4 similar to 1.5 mu m is synthesized by ESDS of Ti foils in 10 M NaOH solution under an applied current density of 0.5 A cm(-2), leading to a reaction yield of approximately 0.10 similar to 0.15 g per square centimetre of exposed Ti foil within 20 min. After hydrogen ion exchange, the surface area can reach as high as similar to 406 m(2) g(-1). On the Ti surface, a crystalline rutile TiO2 nanosheet structure is formed, which is attributed to the local exothermic heat caused by the spark discharge. A formation mechanism of the TMS is discussed based on field emission scanning electron microscopy (FESEM), a transmission electron microscopy (TEM) study and Raman scattering spectroscopy analysis. The as-prepared TMS shows excellent adsorption performance compared with a titanate micro-particle (TMP), nanowire (TNW) and nanotube (TNT) when methylene blue (MB) and Pb-II ions are used as representative organic and inorganic pollutants. The mechanism of adsorption has also been discussed.National Research Foundation of Singapore Government [MEWR651/06/160

    Effects of different transcranial magnetic stimulations on neuropathic pain after spinal cord injury

    Get PDF
    IntroductionRepetitive transcranial magnetic stimulation (rTMS) is an effective non-invasive cortical stimulation technique in the treatment of neuropathic pain. As a new rTMS technique, intermittent theta burst stimulation (iTBS) is also effective at relieving pain. We aimed to establish the pain-relieving effectiveness of different modalities on neuropathic pain. The study was conducted in individuals with spinal cord injury (SCI) and different modalities of rTMS.MethodsThirty-seven individuals with SCI were randomly allocated to three groups, in which the “iTBS” group received iTBS, the “rTMS” group received 10 Hz rTMS, and the “iTBS + rTMS” group received iTBS and 10 Hz rTMS successively of the primary motor cortex 5 days a week for 4 weeks, and they all underwent the full procedures. The primary outcome measure was change in the visual analog scale (VAS), and the secondary outcomes were measured using the Hamilton Rating Scale for Depression (HAM-D) and the Pittsburgh Sleep Quality Index (PSQI). All the outcomes were evaluated at 1 day before stimulation (baseline), 1 day after the first week of stimulation (S1), and 1 day after the last stimulation (S2).ResultsThe VAS scores showed significant pain improvement after 4 weeks of stimulation (p = 0.0396, p = 0.0396, and p = 0.0309, respectively) but not after 1 week of stimulation. HAM-D scores declined, but the decreases were not significant until 4 weeks later (p = 0.0444, p = 0.0315, and p = 0.0447, respectively). PSQI scores were also significantly decreased after 4 weeks of stimulation (p = 0.0446, p = 0.0244, and p = 0.0088, respectively). Comparing the three modalities, VAS, HAM-D, and PSQI scores at S1 showed no differences, and, at S2, VAS scores showed significant differences (p = 0.0120; multiple comparisons showed significant differences between iTBS and iTBS + rTMS, p = 0.0091), while the HAM-D and PSQI scores showed no differences.DiscussionThe primary and secondary outcomes all showed significant improvement, indicating that the three different modalities were all effective at relieving the pain. However, not all the three stimulations were of same effectiveness after treatment; there were statistical differences in the treatment of neuropathic pain between iTBS as a priming stimulus and as a single procedure

    The dilemma of antibiotic susceptibility and clinical decision-making in a multi-drug-resistant Pseudomonas aeruginosa bloodstream infection

    Get PDF
    Objective: How to choose the appropriate antibiotics and dosage has always been a difficult issue during the treatment of multi-drug-resistant bacterial infections. Our study aims to resolve this difficulty by introducing our multi-disciplinary treatment (MDT) clinical decision-making scheme based on rigorous interpretation of antibiotic susceptibility tests and precise therapeutic drug monitoring (TDM)-guided dosage adjustment.Method: The treatment course of an elderly patient who developed a multi-drug-resistant Pseudomonas aeruginosa (MDRPA) bloodstream infection from a brain abscess was presented.Results: In the treatment process, ceftazidime–avibactam (CAZ–AVI) was used empirically for treating the infection and clinical symptoms improved. However, the follow-up bacterial susceptibility test showed that the bacteria were resistant to CAZ–AVI. Considering the low fault tolerance of clinical therapy, the treatment was switched to a 1 mg/kg maintenance dose of susceptible polymyxin B, and TDM showed that the AUC24h, ss of 65.5 mgh/L had been achieved. However, clinical symptoms were not improved after 6 days of treatment. Facing the complicated situation, the cooperation of physicians, clinical pharmacologists, and microbiologists was applied, and the treatment finally succeeded with the pathogen eradicated when polymyxin B dose was increased to 1.4 mg/kg, with the AUC24h, ss of 98.6 mgh/L.Conclusion: MDT collaboration on the premise of scientific and standardized drug management is helpful for the recovery process in patients. The empirical judgment of doctors, the medication recommendations from experts in the field of TDM and pharmacokinetics/pharmacodynamics, and the drug susceptibility results provided by the clinical microbiology laboratory all provide the direction of treatment

    The exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses

    Get PDF
    This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases These results reveal that there is a large built-in electric field in the well layer and the exciton-LO phonon coupling is strongly affected by the thickness of the cap layerNational Natural Science Foundation of China [60876007, 10974165]; Xiamen Municipal Science and Technology Bureau, China [2006AA03Z110

    Research Progression of Extralevator Abdominoperineal Excision for Low Rectal Cancer

    Get PDF
    Abstract It has been reported that the conventional abdominoperineal excision has the disadvantages of higher rates of positive circumferential resection margin and intraoperative bowel perforation. Extralevator abdominoperineal excision (ELAPE) has become increasingly used because of some evidence of improved oncological outcome. The superiority of extralevator abdominoperineal excision (ELAPE) over conventional abdominoperineal excision (APE) remains controversial, despite the publication of many studies on this issue. The aim of this paper was to review the research progression of extralevator abdominoperineal excision for low rectal cancer

    Data Analysis and Modeling of Chilled Water Loops in Air Conditioning Systems

    No full text
    Artificial neural network has been widely used in air conditioning systems as an effective method for predicting parameters, and the accuracy of ANN model relies on training data and network structure. In order to increase the quality of chilled water loops model, this paper develops an optimal data processing algorithm combining Kalman filtering with particle swarm optimization to compensate for uncertain factors and disturbances of collected data from the case building and establishes the nonlinear variation trend database. Based on Elman and BP neural networks, this paper proposes the improved network structures to avoid the local optimum predicted value of chilled water loops and increase data training speed. Simulation results show that this algorithm improves the data accuracy of current percentage (CP) of chillers and chilled water temperatures 12% and 9%. Compared with Elman and BP models, mean absolute errors of CP improved models are improved 24.1% and 10.3%, and mean squared errors of water temperature improved models are improved 5.2% and 4.8%. For the purpose of energy conservation control in air conditioning systems, this work has an application value and can be used for predicting other parameters of buildings

    Replication Data for: Hot Carrier Extraction in CH3NH3PbI3 Unveiled by Pump-Push-Probe Spectroscopy

    No full text
    Halide perovskites recently emerged as a promising material for development in hot carrier solar cells (HCSCs), where the excess energy of above-bandgap photons is harvested before being wasted to heat to enhance device efficiency. Presently, HC separation and transfer processes at higher energy states remain poorly understood. Herein, we investigate the excited-state dynamics in the ubiquitous CH3NH3PbI3 using pump-push-probe spectroscopy, which has its intrinsic advantages for studying these dynamics over the conventional transient spectroscopy, albeit complementary to one another. By exploiting the broad excited state absorption characteristics, our findings reveal the transfer of HCs from these higher energy states into bathophenanthroline (bphen), an energy selective organic acceptor far above perovskite's bandedges. Complete HC extraction is realized only after overcoming the interfacial barrier formed at the heterojunction, estimated to be between 1.01 eV and 1.08 eV above bphen’s lowest unoccupied molecular orbital level. The insights gained from this study are essential for the development of a new class of optoelectronics
    corecore