28 research outputs found

    In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury In Vivo

    No full text
    Schizochytrium protein hydrolysate (SPH) was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW) of SPH was principally concentrated at 180–3000 Da (52.29%). SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa) and SPH-II (MW > 3 kDa). Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC50 of 350 μg/mL and 17.5 μg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW) to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA) level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body

    Physico-Chemical and Antifungal Properties of a Trypsin Inhibitor from the Roots of Pseudostellaria heterophylla

    No full text
    Plant peptidase inhibitors play essential roles in the defense systems of plants. A trypsin inhibitor (PHTI) with a molecular mass of 20.5 kDa was isolated from the fresh roots of the medicinal herb, Pseudostellaria heterophylla. The purification process involved ammonium sulfate precipitation, gel filtration chromatography on Sephadex G50, and ion-exchange chromatography on DEAE 650M. The PHTI contained 3.7% α-helix, 42.1% β-sheets, 21.2% β-turns, and 33% disordered structures, which showed similarity with several Kunitz-type trypsin inhibitors. Inhibition kinetic studies indicated that PHTI was a competitive inhibitor, with a Ki value of 3.01 × 10−9 M, indicating a high affinity to trypsin. The PHTI exhibited considerable stability over a broad range of pH (2–10) and temperatures (20–70 °C); however, metal ions, including Fe3+, Ba2+, Mn2+, and Al3+, could inactivate PHTI to different degrees. Results of fluorescence spectroscopy and circular dichroism showed that Fe3+ could bind to TI with an association constant of 2.75 × 105 M−1 to form a 1:1 complex, inducing conformation changes and inactivation of PHTI. In addition, PHTI could inhibit the growth of the phytopathogens, Colletotrichum gloeosporioides and Fusarium oxysporum, through disruption of the cell membrane integrity. The present study extended research on Pseudostellaria heterophylla proteins and makes PHTI an exploitable candidate as an antifungal protein for further investigation

    A Specific Peptide with Calcium-Binding Capacity from Defatted Schizochytrium sp. Protein Hydrolysates and the Molecular Properties

    No full text
    Marine microorganisms have been proposed as a new kind of protein source. Efforts are needed in order to transform the protein-rich biological wastes left after lipid extraction into value-added bio-products. Thus, the utilization of protein recovered from defatted Schizochytrium sp. by-products presents an opportunity. A specific peptide Tyr-Leu (YL) with calcium-binding capacity was purified from defatted Schizochytrium sp. protein hydrolysates through gel filtration chromatography and RP-HPLC. The calcium-binding activity of YL reached 126.34 ± 3.40 μg/mg. The calcium-binding mechanism was investigated through ultraviolet, fluorescence and infrared spectroscopy. The results showed that calcium ions could form dative bonds with carboxyl oxygen atoms and amino nitrogen atoms as well as the nitrogen and oxygen atoms of amide bonds. YL-Ca exhibited excellent thermal stability and solubility, which was beneficial for its absorption and transport in the basic intestinal tract of the human body. Moreover, the cellular uptake of calcium in Caco-2 cells showed that YL-Ca could enhance calcium uptake efficiency and protect calcium ions against precipitation caused by dietary inhibitors such as tannic acid, oxalate, phytate and metal ions. The findings indicate that the by-product of Schizochytrium sp. is a promising source for making peptide-calcium bio-products as algae-based functional supplements for human beings

    Expression patterns of ClC-3 mRNA and protein in aortic smooth muscle, kidney and brain in diabetic rats

    No full text
    ClC-3, a member of the ClC family of voltage-gated chloride channels, regulates cell proliferation of cultured rat aortic vascular smooth muscle cells, pathogenesis of allergic rhinitis and tumor cell migration. However, its role in diabetic animals is still unknown. To address this issue, we investigated the expression patterns of ClC-3 in diabetic rats. Five-week-old Sprague-Dawley rats were divided into two groups, 50 non-diabetic control rats (non-DM) and 50 diabetic model rats (DM). ClC-3 mRNA and protein expression in aortic smooth muscle, kidney and brain tissues were examined by fluorimeter-based quantitive RT-PCR assay and Western blot analysis, respectively. ClC-3 mRNA and protein were endogenously expressed in aortic smooth muscle, kidney (cortex and medulla) and brain tissues of both control and streptozotocin-induced diabetic rats. ClC-3 mRNA and protein expression levels were significantly higher in aortic smooth muscle and brain tissues of diabetic rats, but significantly decreased in kidney medulla tissue, relative to non-DM controls..There were no significant differences in ClC-3 mRNA and protein expression in kidney cortex between non-diabetic control and diabetic rats. Furthermore, the altered ClC-3 expression patterns in diabetic rat aortic smooth muscle, brain, and kidney medulla tissues all correlated with the changes in blood glucose levels (p < 0.05). In conclusion, our data show for the first time that diabetes alters both the gene and protein expression of ClC-3 channels. These changes may contribute to the impaired vascular, brain and kidney functions observed in diabetes

    Novel Small Molecule Probes for Metastatic Melanoma

    No full text
    Actively targeting probe <b>1b</b>, an unsymmetrical bivalent dipeptide mimic, selectively bound melanoma over healthy skin tissue in histological samples from patients and Sinclair swine. Modifications to <b>1b</b> gave agents <b>2</b>–<b>4</b> that contain a near-IR aza-BODIPY fluor. Contrary to our expectations, symmetrical probe <b>3</b> gave the highest melanoma-to-healthy skin selectivity in histochemistry and experiments with live cells; this was surprising because <b>2</b>, not <b>3</b>, is unsymmetrical like the original lead <b>1</b>. Optical imaging of <b>3</b> in a mouse melanoma model failed to show tumor accumulation <i>in vivo</i>, but the probe did selectively accumulate in the tumor (some in lung and less in the liver) as proven by analysis of the organs post mortem

    One-pot synthesis of trans

    No full text

    One-pot synthesis of <i>trans</i>-β-lactams from ferrocenylketene generated by thermal Wolff rearrangement

    No full text
    <p>A series of β-lactams containing the ferrocene moiety were synthesized through the Staudinger reaction between ferrocenylketene generated by the thermal Wolff rearrangement of the corresponding diazo ketone and various imines. The stereochemical outcome has been investigated and the <i>trans</i>-products were isolated as the main products, opposite to the reported results by Bonini and coworkers. The absolute configuration of (±)-<i>trans</i>-1,4-diphenyl-3-ferrocenylazetidin-2-one (<b>3c</b>) was determined by X-ray analysis. The stereoselectivity is discussed from the viewpoint of the reaction mechanism.</p
    corecore