95 research outputs found

    AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa

    Get PDF
    Background Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. We present AxParafit and AxPcoords (Ax stands for Accelerated) which are highly optimized versions of Parafit and DistPCoA respectively. Results Both programs have been entirely re-written in C. Via optimization of the algorithm and the C code as well as integration of highly tuned BLAS and LAPACK methods AxParafit runs 5–61 times faster than Parafit with a lower memory footprint (up to 35% reduction) while the performance benefit increases with growing dataset size. The MPI-based parallel implementation of AxParafit shows good scalability on up to 128 processors, even on medium-sized datasets. The parallel analysis with AxParafit on 128 CPUs for a medium-sized dataset with an 512 by 512 association matrix is more than 1,200/128 times faster per processor than the sequential Parafit run. AxPcoords is 8–26 times faster than DistPCoA and numerically stable on large datasets. We outline the substantial benefits of using parallel AxParafit by example of a large-scale empirical study on smut fungi and their host plants. To the best of our knowledge, this study represents the largest co-phylogenetic analysis to date. Conclusion The highly efficient AxPcoords and AxParafit programs allow for large-scale co-phylogenetic analyses on several thousands of taxa for the first time. In addition, AxParafit and AxPcoords have been integrated into the easy-to-use CopyCat tool

    Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications

    Get PDF
    The morphologically diverse genus Ceuthospora has traditionally been linked to Phacidium sexual morphs via association, though molecular or cultural data to confirm this relationship have been lacking. The aim of this study was thus to resolve the relationship of these two genera by generating nucleotide sequence data for three loci, ITS, LSU and RPB2. Based on these results, Ceuthospora is reduced to synonymy under the older generic name Phacidium. Phacidiaceae (currently Helotiales) is suggested to constitute a separate order, Phacidiales (Leotiomycetes), as sister to Helotiales, which is clearly paraphyletic. Phacidiaceae includes Bulgaria, and consequently the family Bulgariaceae becomes a synonym of Phacidiaceae. Several new combinations are introduced in Phacidium, along with two new species, P. pseudophacidioides, which occurs on Ilex and Chamaespartium in Europe, and Phacidium trichophori, which occurs on Trichophorum cespitosum subsp. germanicum in The Netherlands. The generic name Allantophomopsiella is introduced to accommodate A. pseudotsugae, a pathogen of conifers, while Gremmenia is resurrected to accommodate the snow-blight pathogens of conifers, G. abietis, G. infestans, and G. pini-cembrae
    • …
    corecore