38 research outputs found

    Potency analysis of cellular therapies: the emerging role of molecular assays

    Get PDF
    Potency testing is an important part of the evaluation of cellular therapy products. Potency assays are quantitative measures of a product-specific biological activity that is linked to a relevant biological property and, ideally, a product's in vivo mechanism of action. Both in vivo and in vitro assays can be used for potency testing. Since there is often a limited period of time between the completion of production and the release from the laboratory for administration to the patient, in vitro assays such are flow cytometry, ELISA, and cytotoxicity are typically used. Better potency assays are needed to assess the complex and multiple functions of cellular therapy products, some of which are not well understood. Gene expression profiling using microarray technology has been widely and effectively used to assess changes of cells in response to stimuli and to classify cancers. Preliminary studies have shown that the expression of noncoding microRNA which play an important role in cellular development, differentiation, metabolism and signal transduction can distinguish different types of stem cells and leukocytes. Both gene and microRNA expression profiling have the potential to be important tools for testing the potency of cellular therapies. Potency testing, the complexities associated with potency testing of cellular therapies, and the potential role of gene and microRNA expression microarrays in potency testing of cellular therapies is discussed

    Local taxation in urban areas

    No full text

    Report on the utilisation pattern of medical post graduates in Karnataka, 1965-73

    No full text

    Assessment of the medical and para-medical manpower in Karnataka, 1974-79

    No full text

    Observations on some abnormal foliage in the sandal trees of hangal forest range of Mysore State

    No full text
    This article does not have an abstract

    Not Available

    No full text
    Not AvailableThe genus Bacillus is one of the predominant bacterial genera found in soil, and several species of this genus have been reported from diverse ecological niches. Endowed with tremendous genetic and metabolic diversity, Bacillus spp. serve multiple ecological functions in soil ecosystem from nutrient cycling to conferring stress tolerance to plants. Members of the genus Bacillus are known to have multiple beneficial traits which help the plants directly or indirectly through acquisition of nutrients, overall improvement in growth by production of phytohormones, protection from pathogens and other abiotic stressors. This functionally versatile genus is one of the most commercially exploited bacteria in the agro-biotechnology industry. Still its potential has not been realized sufficiently and requires an emphasis towards translating the relevant technologies from laboratory to land for the benefit of mankind.Not Availabl

    Characterization of <i>Alternaria</i> and <i>Colletotrichum</i> Species Associated with Pomegranate (<i>Punica</i> <i>granatum</i> L.) in Maharashtra State of India

    No full text
    Fungal pathogens are a major constraint affecting the quality of pomegranate production around the world. Among them, Alternaria and Colletotrichum species cause leaf spot, fruit spot or heart rot (black rot), and fruit rot (anthracnose) or calyx end rot, respectively. Accurate identification of disease-causing fungal species is essential for developing suitable management practices. Therefore, characterization of Alternaria and Colletotrichum isolates representing different geographical regions, predominantly Maharashtra—the Indian hub of pomegranate production and export—was carried out. Fungal isolates could not be identified based on morphological characteristics alone, hence were subjected to multi-gene phylogeny for their accurate identification. Based on a maximum likelihood phylogenetic tree, Alternaria isolates were identified as within the A. alternata species complex and as A. burnsii, while Colletotrichum isolates showed genetic closeness to various species within the C. gloeosporioides species complex. Thus, the current study reports for the first time that, in India, the fruit rots of pomegranate are caused by multiple species and not a single species of Alternaria and Colletotrichum alone. Since different species have different epidemiology and sensitivity toward the commercially available and routinely applied fungicides, the precise knowledge of the diverse species infecting pomegranate, as provided by the current study, is the first step towards devising better management strategies
    corecore