23 research outputs found

    Au/Pt and Au/Pt(3)Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction

    Get PDF
    Novel Au/Pt and Au/Pt(3)Ni nanostructures consisting of Pt and Pt(3)Ni alloy nanodendrites grown on Au nanowires were synthesized, which exhibited high electrocatalytic activity and durability toward oxygen reduction when used as self-supported catalysts.NSFC[21131005, 21021061, 20925103, 20871100]; MOST of China[2011CB932403, 2009CB930703]; NSF of Fujian Province[2009J06005]; Fok Ying Tung Education Foundation[121011]; Key Scientific Project of Fujian Province[2009HZ0002-1]; China Postdoctoral Science Foundation[20100480716

    Etching Growth under Surface Confinement: An Effective Strategy To Prepare Mesocrystalline Pd Nanocorolla

    Get PDF
    通讯作者地址: Zheng, NF (通讯作者),Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 2. Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China 电子邮件地址: [email protected] etching growth strategy was developed to prepare corolla-like Pd mesocrystals consisting of unidirectionally aligned, well-spaced, and connected ultrathin (1.8-nm-thick) Pd nanosheets. The combined use of CO and Fe(3+) is critical to the successful synthesis of the branched corolla-like Pd mesocrystals. While CO functions as the surface-confining agent to allow anisotropic growth of the 1.8-nm-thick Pd nanosheets as branches, Fe(3+) etches the Pd seeds at the early stage of the reaction to induce formation of the branched structure. Inheriting the unique properties of 1.8-nm-thick Pd nanosheets, the as-prepared Pd mesocrystals display well-defined surface plasmon resonance absorption in the near-infrared region, a high electrochemically active surface area, and a significant photothermal effect when irradiated with a near-infrared laser. Owing to the presence of internal voids and increased apparent thickness, the Pd mesocrystals also exhibit several features superior to those of single-domain Pd nanosheets, making them promising for electrocatalysis and cancer photothermal therapy applications.NSFC 21131005 21021061 20925103 20871100 Fok Ying Tung Education Foundation 121011 MOST of China 2011CB932403 2009CB930703 NSF of Fujian Province 2009J06005 Key Scientific Project of Fujian Province 2009HZ0002-

    Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets

    Get PDF
    通讯作者地址: Zheng, NF (通讯作者), Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 2. Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 电子邮件地址: [email protected] surfaces of a face-centered cubic metal (e.g., Pd, Pt) have a high density of low-coordinated surface atoms and therefore possess enhanced catalysis activity in comparison with low-index faces. However, because of their high surface energy, the challenge of chemically preparing metal nanocrystals having high-index facets remains. We demonstrate in this work that introducing amines as the surface controller allows concave Pt nanocrystals having {411} high-index facets to be prepared through a facile wet-chemical route. The as-prepared Pt nanocrystals display a unique octapod morphology with {411} facets. The presence of high-index {411} exposed facets endows the concave Pt nanocrystals with excellent electrocatalytic activity in the oxidation of both formic acid and ethanol.NSFC 21021061 20925103 20923004 20871100 Fok Ying Tung Education Foundation 121011 MOST of China 2011CB932403 2009CB930703 NFFTBS J1030415 NSF of Fujian Province 2009J06005 Key Scientific Project of Fujian Province 2009HZ0002-

    A graphene-platinum nanoparticles-ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction

    Get PDF
    通讯作者地址: Tan, YM (通讯作者),Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 2. Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 3. Hunan Normal Univ, Coll Chem & Chem Engn, Minist Educ China, Key Lab Chem Biol & Tradit Chinese Med Res, Changsha 410081, Hunan, Peoples R China 电子邮件地址: [email protected] report here that graphene-supported Pt nanoparticles impregnated with the ionic liquid [MTBD][bmsi] which is more oxygen-philic and less methanol-philic than the exterior aqueous solution can exhibit both enhanced electrocatalytic activity and excellent methanol tolerance for oxygen reduction reaction.MOST of China 2011CB932403 2009CB930703 NSF of China 21131005 21021061 20925103 Fok Ying Tung Education Foundation 121011 NSF of Fujian 2009J06005 China Postdoctoral Science Foundation 2010048071

    Carbon Monoxide-Assisted Synthesis of Single-Crystalline Pd Tetrapod Nanocrystals through Hydride Formation

    Get PDF
    通讯作者地址: Zheng, NF (通讯作者),Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 2. Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 3. Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China 电子邮件地址: [email protected]; [email protected] monoxide can adsorb specifically on Pd(111) to induce the formation of unique Pd nanostructures. In the copresence of CO and H-2 single-crystalline Pd tetrapod nanocrystals have now been successfully prepared. The Pd tetrapods are enclosed by (111) surfaces and are yielded through hydride formation. Density functional theory calculations revealed that the formation of PdHx in the presence of H, reduces the binding energy of CO on Pd and thus helps to decrease the CO coverage during the synthesis, which is essential to the formation of the PdHx tetrapod nanocrystals. In addition to tetrapod nanocrystals, tetrahedral nanocrystals were also produced in the copresence of CO and H-2 when the reaction temperature was ramped to further lower the CO coverage. Upon aging in air, the as-prepared PdHx nanocrystals exhibited a shape-dependent hydrogen releasing behavior. The conversion rate of PdHx tetrapod nanocrystals into metallic Pd was faster than that of tetrahedral nanocrystals.MOST of China 2011CB932403 2009CB930703 NSFC 21131005 21021061 20925103 20973139 21133004 Fok Ying Tung Education Foundation 121011 Fundamental Research Funds for the Central Universitie

    Synthesis of Ultrathin Nitrogen-Doped Graphitic Carbon Nanocages as Advanced Electrode Materials for Supercapacitor

    Get PDF
    E-mail Addresses: [email protected]; [email protected] of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PAN!) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 degrees C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (similar to 95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.MOST of China 2011CB932403 National Natural Science Foundation of China 21075036 21175042 21131005 20925103 Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province Start-Up Fund for Young Teachers in Hunan Normal Universit

    Etching Growth under Surface Confinement: An Effective Strategy To Prepare Mesocrystalline Pd Nanocorolla

    No full text
    An etching growth strategy was developed to prepare corolla-like Pd mesocrystals consisting of unidirectionally aligned, well-spaced, and connected ultrathin (1.8-nm-thick) Pd nanosheets. The combined use of CO and Fe(3+) is critical to the successful synthesis of the branched corolla-like Pd mesocrystals. While CO functions as the surface-confining agent to allow anisotropic growth of the 1.8-nm-thick Pd nanosheets as branches, Fe(3+) etches the Pd seeds at the early stage of the reaction to induce formation of the branched structure. Inheriting the unique properties of 1.8-nm-thick Pd nanosheets, the as-prepared Pd mesocrystals display well-defined surface plasmon resonance absorption in the near-infrared region, a high electrochemically active surface area, and a significant photothermal effect when irradiated with a near-infrared laser. Owing to the presence of internal voids and increased apparent thickness, the Pd mesocrystals also exhibit several features superior to those of single-domain Pd nanosheets, making them promising for electrocatalysis and cancer photothermal therapy applications.NSFC[21131005, 21021061, 20925103, 20871100]; Fok Ying Tung Education Foundation[121011]; MOST of China[2011CB932403, 2009CB930703]; NSF of Fujian Province[2009J06005]; Key Scientific Project of Fujian Province[2009HZ0002-1

    Carbon monoxide-controlled synthesis of surface-clean Pt nanocubes with high electrocatalytic activity

    Get PDF
    MOST of China [2011CB932403, 2009CB930703]; NSFC [21131005, 21021061, 20925103, 20973139, 21133004]; Fok Ying Tung Education Foundation [121011]A new strategy for synthesis of Pt nanocubes on various supports by reduction of a Pt precursor under a CO atmosphere was described. The as-prepared Pt nanocubes supported on multi-walled carbon nanotubes exhibited high activity toward methanol electrooxidation

    The Influence of Hypothermia Hibernation Combined with CO2 Anesthesia on Life and Storage Quality of Large Yellow Croaker (Pseudosciaena crocea)

    No full text
    We explore the feasibility of the long-term transportation of live large yellow croakers (Pseudosciaena crocea) using the combined method of CO2 anesthesia and hypothermia hibernation, and its effect on the quality of recovered fish stored at 4 °C. Fish treated with CO2 anesthesia at a 2 ppm/s aeration rate were cooled at 3 °C/h to hibernate survived for 36 h at 8 °C in seawater. This method resulted in better survival rates and time, and a lower operational time than hypothermia hibernation or CO2 anesthesia methods. The results of a blood analysis indicated that the stress experienced by the fish during hibernation was mitigated, but existent after recovery. The drip loss rate of the ordinary muscle of hibernated fish was significantly different from that of the control group at 4 °C, but there was no significant difference in the pH, lactic acid content, and color during early storage. Furthermore, hibernation did not affect springiness and chewiness. Thus, the combination of CO2 anesthesia and hibernation may improve the survival and operation efficiency of fish in long-term transportation. However, this method affects the quality of fish after long-term storage. Thus, hibernated fish should be consumed after appropriate domestication or immediately after recovery
    corecore