198 research outputs found

    Microbial profile of the ventriculum of honey bee (apis mellifera ligustica spinola, 1806) fed with veterinary drugs, dietary supplements and non-protein amino acids

    Get PDF
    The effects of veterinary drugs, dietary supplements and non-protein amino acids on the European honey bee (Apis mellifera ligustica Spinola, 1806) ventriculum microbial profile were investigated. Total viable aerobic bacteria, Enterobacteriaceae, staphylococci, Escherichia coli, lactic acid bacteria, Pseudomonas spp., aerobic bacterial endospores and Enterococcus spp. were determined using a culture-based method. Two veterinary drugs (Varromed® and Api-Bioxal®), two commercial dietary supplements (ApiHerb® and ApiGo®) and two non-protein amino acids (GABA and beta-alanine) were administered for one week to honey bee foragers reared in laboratory cages. After one week, E. coli and Staphylococcus spp. were significantly affected by the veterinary drugs (p < 0.001). Furthermore, dietary supplements and non-protein amino acids induced significant changes in Staphylococcus spp., E. coli and Pseudomonas spp. (p < 0.001). In conclusion, the results of this investigation showed that the administration of the veterinary drugs, dietary supplements and non-protein amino acids tested, affected the ventriculum microbiological profile of Apis mellifera ligustica

    Plasticity of the Anemonia viridis microbiota in response to different levels of combined anthropogenic and environmental stresses

    Get PDF
    Despite their recognized primary importance, marine coastal ecosystems around the globe are currently under threat, being subject to continuous local and global anthropogenic stressors. In this frame, understanding the response of coastal habitat-forming species to multiple stressors and their resilience is fundamental for the sustainable management of coastal ecosystems. In the present study, to provide some glimpses in this direction, we explored the response of the Anemonia viridis-associated microbiota to the combined anthropogenic stressors, which typically affect touristic hotspots at Mediterranean coastal sites. To this aim, two case studies have been carried out, the first in the Riccione coastal site (Italy, Center Mediterranean) and the second at Cap de Creus (Spain, North-western Mediterranean), where the A. viridis microbiota was assessed under the conditions of both high and low anthropogenic pressure. According to our findings, the A. viridis microbiota showed a relevant degree of plasticity in response to combined anthropogenic and environmental stressors, with changes that also mirrored variations in the surrounding seawater, thus indicating a close connection with the environment, from which potential symbiotic partners are selected. However, this potentially adaptive process also has a limitation, as observed in the highly anthropogenic impact site of Cap de Creus, where A. viridis-associated microbiota appeared completely unstructured, as demonstrated by an increased dispersion according to the Anna Karenina principle. This raises the question about the resilience of the A. viridis-associated microbiota under combined climate and anthropogenic threats, as well as of the anthropogenic factors driving the observed dysbiosis changes

    Refinement of the NISECI ecological index reference conditions for Italian freshwater fish communities in the eastern Emilia-Romagna region

    Get PDF
    Following the Water Framework Directive 2000/60/CE (WFD), each member state of the European Union must monitor compliance of its rivers with ecological quality standards through biological quality indicators. The New Italian Index of the Ecological State of Fish Communities (NISECI) was developed in 2017 for the assessment of fish communities, as directed by the WFD in Italian freshwater habitats. According to the WFD, the general reference conditions (GRCs) of NISECI must be refined on a regional scale through new calculation of its metrics and sub-metrics. In the present study we used environmental and ichthyological data from 457 fish samplings distributed among 299 sampling sites within 84 different water bodies collected from 1995 to 2012 to develop: 1) new lists of expected species for six homogeneous zones identified in the Reno basin (Italy) and in the eastern regional basins of the Emilia-Romagna region; and 2) the threshold values for their species-specific abundance. Results were set as refined reference conditions (RRCs) for two of the metrics used in the application of the NISECI index in the study area (i.e. X1, relating to indigenous species and X2,b, for the abundance of expected species). The RRCs were tested by applying NISECI to 24 monitoring sites of the regional surface water monitoring network (i.e., ARPAE) and comparing the results with the application of NISECI using the GRCs. Furthermore, the analytical power of the refined NISECI was evaluated by relating the findings to three expertbased blind assessments of fish community ecological status. The results confirmed an increase in refined NISECI values and its higher consistency with expert-based assessment, supporting the validity of the presented method for RRC development and its potential for application in other regions

    Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features

    Get PDF
    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-\u3c93 with a consequent increase in \u3c96/\u3c93 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD

    NfL and pNfH are increased in Friedreich's ataxia

    Get PDF
    Objective: To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich’s ataxia. / Methods: Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with genetically confirmed Friedreich’s ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, age, age at onset, and GAA repeat length. / Results: Median serum levels of NfL were 21.2 pg/ml (range 3.6–49.3) in controls and 26.1 pg/ml (0–78.1) in Friedreich’s ataxia (p = 0.002). pNfH levels were 23.5 pg/ml (13.3–43.3) in controls and 92 pg/ml (3.1–303) in Friedreich’s ataxia (p = 0.0004). NfL levels were significantly increased in younger patients (age 16–31 years, p < 0.001) and patients aged 32–47 years (p = 0.008), but not in patients of age 48 years and older (p = 0.41). In a longitudinal assessment, there was no difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated inversely with GAA1 repeat length (r = − 0.24, p = 0.02) but not with disease severity (r = − 0.13, p = 0.22), disease duration (r = − 0.06, p = 0.53), or age at onset (r = 0.05, p = 0.62). / Conclusion: Serum levels of NfL and pNfH are elevated in Friedreich’s ataxia, but differences to healthy controls decrease with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study over 2 years of follow-up—a period relevant for biomarkers indicating treatment effects—we found NfL levels to be stable

    Model Organisms Reveal Insight into Human Neurodegenerative Disease: Ataxin-2 Intermediate-Length Polyglutamine Expansions Are a Risk Factor for ALS

    Get PDF
    Model organisms include yeast Saccromyces cerevisae and fly Drosophila melanogaster. These systems have powerful genetic approaches, as well as highly conserved pathways, both for normal function and disease. Here, we review and highlight how we applied these systems to provide mechanistic insight into the toxicity of TDP-43. TDP-43 accumulates in pathological aggregates in ALS and about half of FTD. Yeast and fly studies revealed an interaction with the counterparts of human Ataxin-2, a gene whose polyglutamine repeat expansion is associated with spinocerebellar ataxia type 2. This finding raised the hypothesis that repeat expansions in ataxin-2 may associate with diseases characterized by TDP-43 pathology such as ALS. DNA analysis of patients revealed that intermediate-length polyglutamine expansions in ataxin-2 are a risk factor for ALS, such that repeat lengths are greater than normal, but lower than that associated with spinocerebellar ataxia type 2 (SCA2), and are more frequent in ALS patients than in matched controls. Moreover, repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to the pure CAG repeat expansions typically associated with SCA2. These studies provide an example of how model systems, when extended to human cells and human patient tissue, can reveal new mechanistic insight into disease

    SCAview: an Intuitive Visual Approach to the Integrative Analysis of Clinical Data in Spinocerebellar Ataxias

    Get PDF
    With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data points resulting from the selected attributes are provided. The underlying synthetic cohort is based on clinical data from five different European and US longitudinal multicenter cohorts in spinocerebellar ataxia type 1, 2, 3, and 6 (SCA1, 2, 3, and 6) comprising > 1400 patients with overall > 5500 visits. First, we developed a common data model to integrate the clinical, demographic, and characterizing data of each source cohort. Second, the available datasets from each cohort were mapped onto the data model. Third, we created a synthetic cohort based on the cleaned dataset. With SCAview, we demonstrate the feasibility of mapping cohort data from different sources onto a common data model. The resulting browser-based visualization tool with a thoroughly graphical handling of the data offers researchers the unique possibility to visualize relationships and distributions of clinical data, to define subgroups and to further investigate them without any technical effort. Access to SCAview can be requested via the Ataxia Global Initiative and is free of charge
    • …
    corecore