5,019 research outputs found
Electronic structure and magnetism in doped semiconducting half-Heusler compounds
We have studied in details the electronic structure and magnetism in M (Mn
and Cr) doped semiconducting half-Heusler compounds FeVSb, CoTiSb and NiTiSn
(XMYZ) in a wide concentration range using local-spin density
functional method in the framework of tight-binding linearized muffin tin
orbital method(TB-LMTO) and supercell approach. Our calculations indicate that
some of these compounds are not only ferromagnetic but also half-metallic and
may be useful for spintronics applications. The electronic structure of the
doped systems is analyzed with the aid of a simple model where we have
considered the interaction between the dopant transition metal (M) and the
valence band X-Z hybrid. We have shown that the strong X-d - M-d interaction
places the M-d states close to the Fermi level with the M-t states lying
higher in energy in comparison to the M-e states. Depending on the number
of available d-electrons, ferromagnetism is realized provided the d-manifold is
partially occupied. The tendencies toward ferromagnetic(FM) or
antiferromagnetic(AFM) behavior are discussed within Anderson-Hasegawa models
of super-exchange and double-exchange. In our calculations for Mn doped NiTiSn,
the strong preference for FM over AFM ordering suggests a possible high Curie
temperature for these systems.Comment: 14 pages, 6 figure
Determination of the Band Gap of Semiconductors from the Electrical Measurement on Respective Diodes
Two Dimensional Spin-Polarized Electron Gas at the Oxide Interfaces
The formation of a novel spin-polarized 2D electron gas at the LaMnO
monolayer embedded in SrMnO is predicted from the first-principles
density-functional calculations. The La (d) electrons become confined in the
direction normal to the interface in the potential well of the La layer,
serving as a positively-charged layer of electron donors. These electrons
mediate a ferromagnetic alignment of the Mn t spins near the interface
via the Anderson-Hasegawa double exchange and become, in turn, spin-polarized
due to the internal magnetic fields of the Mn moments.Comment: 5 pages, 6 figure
- …