53 research outputs found

    Status Report on the Development of Research Campaigns

    Get PDF
    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns

    Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    No full text
    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field

    Quantification of High Temperature Transition Al2O3 and Their Phase Transformations

    No full text
    High temperature exposure of gamma-Al2O3 can lead to a series of polymorphic transformations, including the formation of delta-Al2O3 and theta-Al2O3. Quantification of the microstructure in the delta/theta-Al2O3 formation range represents a formidable challenge as both phases accommodate a high degree of structural disorder. In this work, we explore the use of XRD recursive stacking formalism for quantification of high temperature transition aluminas. We formulate the recursive stacking methodology for modelling of disorder in delta-Al2O3 and twinning in theta-Al2O3 and show that explicitly accounting for the disorder is necessary to reliably model the XRD patterns of high temperature transition alumina. In the second part, we use the recursive stacking approach to study phase transformation during high temperature (1050 ÂșC) treatment. We show that the two different intergrowth modes of delta-Al2O3 have different transformation characteristics, and that a significant portion of delta-Al2O3 is stabilized with theta-Al2O3 even after prolonged high-temperature exposures. In discussions, we outline the limitation of the current XRD approach and discuss a possible multimodal XRD and NMR approach which can improve analysis of complex transition aluminas.</p

    Unraveling the Dynamic Network in the Reactions of an Alkyl Aryl Ether Catalyzed by Ni/Îł-Al2O3 in 2-Propanol

    No full text
    The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ÎČ-O-4 linkage in lignin), catalyzed by Ni/Îł-Al2O3, was observed directly at elevated temperatures (150–175 °C) and pressures (79–89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid–vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s–1 gcat–1 and an apparent activation barrier of (80 ± 8) kJ mol–1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s–1 gcat–1 at 170–175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s–1 gcat–1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol–1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid–liquid interface.</p
    • 

    corecore