4 research outputs found
Therapy of intracellular Staphylococcus aureus by tigecyclin
BACKGROUND: In the fields of traumatology and orthopaedics staphylococci are the most frequently isolated pathogens. Staphylococcus aureus and Staphylococcus epidermidis are known to be the major causative agents of osteomyelitis. The increasing number of multiresistant Staphylococcus aureus and resistant coagulase-negative staphylococci as a trigger of complicated osteomyelitis and implant-associated infections is a major problem. Antibiotic therapy fails in 20% of cases. Therefore the development of novel antibiotics becomes necessary. METHODS: This study analyses tigecyclin, the first antibiotic of the glycylines, as a potential therapy for osteomyelitis caused by multiresistant Staphylococcus aureus. Therefore its intracellular activity and the potential use in polymethylmetacrylate-bone cement are examined. The intracellular activity of tigecyclin is determined by a human osteoblast infection model. The investigation of the biomechanical characteristics is conducted concerning the ISO 5833-guidelines. RESULTS: Tigecyclin shows in vitro an intracellular activity that ranges between the antimicrobial activity of gentamicin and rifampicin. A significant negative effect on the biomechanical characteristics with an impaired stability is detected after adding tigecyclin to polymethylmetacrylate-bone cement with a percentage of 1.225% per weight. CONCLUSIONS: This study shows that tigecyclin might be a potent alternative for the systemic therapy of osteomyelitis and implant-associated infections whereas the local application has to be reconsidered individually
Therapy of intracellular Staphylococcus aureus by tigecyclin
Background: In the fields of traumatology and orthopaedics staphylococci are the most frequently isolated pathogens. Staphylococcus aureus and Staphylococcus epidermidis are known to be the major causative agents of osteomyelitis. The increasing number of multiresistant Staphylococcus aureus and resistant coagulase-negative staphylococci as a trigger of complicated osteomyelitis and implant-associated infections is a major problem. Antibiotic therapy fails in 20% of cases. Therefore the development of novel antibiotics becomes necessary. Methods: This study analyses tigecyclin, the first antibiotic of the glycylines, as a potential therapy for osteomyelitis caused by multiresistant Staphylococcus aureus. Therefore its intracellular activity and the potential use in polymethylmetacrylate-bone cement are examined. The intracellular activity of tigecyclin is determined by a human osteoblast infection model. The investigation of the biomechanical characteristics is conducted concerning the ISO 5833-guidelines. Results: Tigecyclin shows in vitro an intracellular activity that ranges between the antimicrobial activity of gentamicin and rifampicin. A significant negative effect on the biomechanical characteristics with an impaired stability is detected after adding tigecyclin to polymethylmetacrylate-bone cement with a percentage of 1.225% per weight. Conclusions: This study shows that tigecyclin might be a potent alternative for the systemic therapy of osteomyelitis and implant-associated infections whereas the local application has to be reconsidered individually.<br
Daptomycin: Local Application in Implant-Associated Infection and Complicated Osteomyelitis
Background. The rise of highly resistant bacteria creates a persistent urge to develop new antimicrobial agents. This paper investigates the application of the lipopeptide antibiotic daptomycin in infections involving the human bone. Methods. Compressive and tensile strength testing of daptomycin-laden PMMA was performed referring to the ISO 5833. The microstructure of the antibiotic-laden PMMA was evaluated by scanning electron microscopy. Intracellular activity of daptomycin was determined by a human osteoblast infection model. Elution kinetics of the antibiotic-laden bone cement was measured by using a continuous flow chamber setup. Results. There was no significant negative effect of adding 1.225% and 7.5% per weight of daptomycin to the PMMA. There was no significant difference in intracellular activity comparing gentamicin to daptomycin. Elution of daptomycin from PMMA showed within the first-hour initial peak values of 15–20 μg/mL. Conclusion. Daptomycin has a certain degree of activity in the intracellular environment of osteoblasts. Daptomycin admixed to PMMA remains bactericidal and does not significantly impair structural characteristics of the PMMA. The results of this paper suggest that daptomycin might be a potent alternative for treating osteomyelitis and implant-associated infection in trauma and orthopedic surgery caused by multiresistant strains