95 research outputs found
Recommended from our members
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants
Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project
Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10−8) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10−4) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response
Determinants of Mosaic Chromosomal alteration Fitness
Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI toPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (
Determinants of mosaic chromosomal alteration fitness
Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT
Mosaic Chromosomal alterations in Blood across ancestries Using Whole-Genome Sequencing
Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis
Whole-exome imputation of sequence variants identified two novel alleles associated with adult body height in African Americans
Adult body height is a quantitative trait for which genome-wide association studies (GWAS) have identified numerous loci, primarily in European populations. These loci, comprising common variants, explain <10% of the phenotypic variance in height. We searched for novel associations between height and common (minor allele frequency, MAF ≥5%) or infrequent (0.5% < MAF < 5%) variants across the exome in African Americans. Using a reference panel of 1692 African Americans and 471 Europeans from the National Heart, Lung, and Blood Institute's (NHLBI) Exome Sequencing Project (ESP), we imputed whole-exome sequence data into 13 719 African Americans with existing array-based GWAS data (discovery). Variants achieving a height-association threshold of P < 5E−06 in the imputed dataset were followed up in an independent sample of 1989 African Americans with whole-exome sequence data (replication). We used P < 2.5E−07 (=0.05/196 779 variants) to define statistically significant associations in meta-analyses combining the discovery and replication sets (N = 15 708). We discovered and replicated three independent loci for association: 5p13.3/C5orf22/rs17410035 (MAF = 0.10, β = 0.64 cm, P = 8.3E−08), 13q14.2/SPRYD7/rs114089985 (MAF = 0.03, β = 1.46 cm, P = 4.8E−10) and 17q23.3/GH2/rs2006123 (MAF = 0.30; β = 0.47 cm; P = 4.7E−09). Conditional analyses suggested 5p13.3 (C5orf22/rs17410035) and 13q14.2 (SPRYD7/rs114089985) may harbor novel height alleles independent of previous GWAS-identified variants (r2 with GWAS loci <0.01); whereas 17q23.3/GH2/rs2006123 was correlated with GWAS-identified variants in European and African populations. Notably, 13q14.2/rs114089985 is infrequent in African Americans (MAF = 3%), extremely rare in European Americans (MAF = 0.03%), and monomorphic in Asian populations, suggesting it may be an African-American-specific height allele. Our findings demonstrate that whole-exome imputation of sequence variants can identify low-frequency variants and discover novel variants in non-European populations
Highlights From the Annual Meeting of the American Epilepsy Society 2022
With more than 6000 attendees between in-person and virtual offerings, the American Epilepsy Society Meeting 2022 in Nashville, felt as busy as in prepandemic times. An ever-growing number of physicians, scientists, and allied health professionals gathered to learn a variety of topics about epilepsy. The program was carefully tailored to meet the needs of professionals with different interests and career stages. This article summarizes the different symposia presented at the meeting. Basic science lectures addressed the primary elements of seizure generation and pathophysiology of epilepsy in different disease states. Scientists congregated to learn about anti-seizure medications, mechanisms of action, and new tools to treat epilepsy including surgery and neurostimulation. Some symposia were also dedicated to discuss epilepsy comorbidities and practical issues regarding epilepsy care. An increasing number of patient advocates discussing their stories were intertwined within scientific activities. Many smaller group sessions targeted more specific topics to encourage member participation, including Special Interest Groups, Investigator, and Skills Workshops. Special lectures included the renown Hoyer and Lombroso, an ILAE/IBE joint session, a spotlight on the impact of Dobbs v. Jackson on reproductive health in epilepsy, and a joint session with the NAEC on coding and reimbursement policies. The hot topics symposium was focused on traumatic brain injury and post-traumatic epilepsy. A balanced collaboration with the industry allowed presentations of the latest pharmaceutical and engineering advances in satellite symposia
Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes
Understanding the genetic complexity of puberty timing across the allele frequency spectrum
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease
- …