2,391 research outputs found

    Short-Packet Downlink Transmission with Non-Orthogonal Multiple Access

    Full text link
    This work introduces downlink non-orthogonal multiple access (NOMA) into short-packet communications. NOMA has great potential to improve fairness and spectral efficiency with respect to orthogonal multiple access (OMA) for low-latency downlink transmission, thus making it attractive for the emerging Internet of Things. We consider a two-user downlink NOMA system with finite blocklength constraints, in which the transmission rates and power allocation are optimized. To this end, we investigate the trade-off among the transmission rate, decoding error probability, and the transmission latency measured in blocklength. Then, a one-dimensional search algorithm is proposed to resolve the challenges mainly due to the achievable rate affected by the finite blocklength and the unguaranteed successive interference cancellation. We also analyze the performance of OMA as a benchmark to fully demonstrate the benefit of NOMA. Our simulation results show that NOMA significantly outperforms OMA in terms of achieving a higher effective throughput subject to the same finite blocklength constraint, or incurring a lower latency to achieve the same effective throughput target. Interestingly, we further find that with the finite blocklength, the advantage of NOMA relative to OMA is more prominent when the effective throughput targets at the two users become more comparable.Comment: 15 pages, 9 figures. This is a longer version of a paper to appear in IEEE Transactions on Wireless Communications. Citation Information: X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, "Short-Packet Downlink Transmission with Non-Orthogonal Multiple Access," IEEE Trans. Wireless Commun., accepted to appear [Online] https://ieeexplore.ieee.org/document/8345745

    Evolving Optical Networks for Latency-Sensitive Smart-Grid Communications via Optical Time Slice Switching (OTSS) Technologies

    Get PDF
    In this paper, we proposed a novel OTSS-assisted optical network architecture for smart-grid communication networks, which has unique requirements for low-latency connections. Illustrative results show that, OTSS can provide extremely better performance in latency and blocking probability than conventional flexi-grid optical networks.Comment: IEEE Photonics Society 1st Place Best Poster Award, on CLEO-PR/OECC/PGC 201

    A visibility graph approach to CNY exchange rate networks and characteristic analysis

    Get PDF
    We find that exchange rate networks are significantly similar from the perspective of topological structure, though with relatively great differences in fluctuation characteristics from perspective of exchange rate time series. First, we transform central parity rate time series of US dollar, Euro, Yen, and Sterling against CNY into exchange rate networks with visibility graph algorithm and find consistent topological characteristics in four exchange rate networks, with their average path lengths 5 and average clustering coefficients 0.7. Further, we reveal that all four transformed exchange rate networks show hierarchical structure and small-world and scale-free properties, with their hierarchy indexes 0.5 and power exponents 1.5. Both of the US dollar network and Sterling network exhibit assortative mixing features, while the Euro network and Yen network exhibit disassortative mixing features. Finally, we research community structure of exchange rate networks and uncover the fact that the communities are actually composed by large amounts of continuous time point fractions and small amounts of discrete time point fractions. In this way, we can observe that the spread of time series values corresponding to nodes inside communities is significantly lower than the spread of those values corresponding to nodes of the whole networks
    • …
    corecore