43 research outputs found

    Molecular characterization of glucose-6-phosphate dehydrogenase deficient variants in Baghdad city - Iraq

    Get PDF
    Background: Although G6PD deficiency is the most common genetically determined blood disorder among Iraqis, its molecular basis has only recently been studied among the Kurds in North Iraq, while studies focusing on Arabs in other parts of Iraq are still absent. Methods: A total of 1810 apparently healthy adult male blood donors were randomly recruited from the national blood transfusion center in Baghdad. They were classified into G6PD deficient and non-deficient individuals based on the results of methemoglobin reduction test (MHRT), with confirmation of deficiency by subsequent enzyme assays. DNA from deficient individuals was studied using a polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) for four deficient molecular variants, namely G6PD Mediterranean (563 CÂźT), Chatham (1003 GÂźA), A- (202 GÂźA) and Aures (143 TÂźC). A subset of those with the Mediterranean variant, were further investigated for the 1311 (CÂźT) silent mutation. Results: G6PD deficiency was detected in 109 of the 1810 screened male individuals (6.0%). Among 101 G6PD deficient males molecularly studied, the Mediterranean mutation was detected in 75 cases (74.3%), G6PD Chatham in 5 cases (5.0%), G6PD A- in two cases (2.0%), and G6PD Aures in none. The 1311 silent mutation was detected in 48 out of the 51 G6PD deficient males with the Mediterranean variant studied (94.1%). Conclusions: Three polymorphic variants namely: the Mediterranean, Chatham and A-, constituted more than 80% of G6PD deficient variants among males in Baghdad. Iraq. This observation is to some extent comparable to othe

    A multi-MHz single-shot data acquisition scheme with high dynamic range: pump–probe X-ray experiments at synchrotrons

    No full text
    The technical implementation of a multi-MHz data acquisition scheme for laser–X-ray pump–probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∌107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse−1 and is only technically limited by the utilized APD
    corecore