6 research outputs found

    Designing of promising Tromethamine-Diflunisal-Pyrrole combinations based on COX binding, drug-properties and safety

    Get PDF
    Gastric issues that accompany the use of NSAIDs (Non-steroid anti-inflammatory drugs) are always a serious global concern. The inhibition of the Cycloxygenase enzyme (COX) limits the prostaglandin synthesis and thereby facilitates the control of pains, inflammation etc. But this creates gastric issues due to the reduction of mucin formation in the stomach. The present work was performed to create a modification in the structure of NSAID drug Diflunisal, to reduce the gastric effect of acidic moiety in the structure and elevate the overall biological properties. The drug Tromethamine, a base used in acidosis treatment was substituted to reduce the acidic issues. The heterocyclic compound pyrrole was substituted to elevate the properties. Neutral, salt, amide and ester combinations of Tromethamine-Diflunisal were designed, optimized and docked to the crystal structures of COX-1 (PDB ID: 6Y3C) and COX-2 (PDB ID: 5IKR) enzymes, using PyRx software. The combinations with lower COX-1 and COX-2 binding energies relative to Diflunisal were noted. It was analysed if the combinations of Diflunisal, Tromethamine and pyrrole lowers drug-properties or induce toxicities. Pyrrole substitution at position R4 was not found favourable for COX binding. Among the favourable combinations, DF19 is the Diflunisal-Pyrrole-Tromethamine combination, equally favourable for binding to COX targets

    Computational studies on the structural variations of MAO-A and MAO-B inhibitors - An in silico docking approach

    Get PDF
    276-295The neurological disorder is a concerning problem in the present social scenario. The malfunction of the monoamine oxidase (MAO) enzyme is the responsible factor behind this disorder because this enzyme regulates the metabolism of monoamine neurotransmitters. This work aimed to design and propose the best MAO inhibitors through extensive computational analysis so that the favourable drug-like molecules could be identified for future synthesis. The drugs selected in this study were three MAO-A inhibitors namely Moclobemide, Tolxatone and Brofaromine and two MAO-B inhibitors namely Selegiline and Rasagiline. By substituting hydrophilic and hydrophobic groups at the specified positions, structural variations were designed for each drug. The designed variations and their parent drugs were optimized (basis set is B3LYP/6-311G(d, p)) and the optimized structures were docked to the target using PyRx software. The binding energy of each variation was compared to that of parent drug. The drug-likeness, physicochemical properties (solubility, polarity, flexibility, gastrointestinal absorption, saturation etc.) and toxicity of the lower binding energy variations were analysed using the swissADME, Osiris property explorer and ProTox-II servers. The interacting residues of the enzymes were obtained from the LigPlot+ program. The safe and low binding energy variations with favourable drug properties are suggested for further drug research

    Evaluation of antiproliferative potential of manganese (II)-dafone complex

    Get PDF
    Cytotoxicity is the quality of being toxic to cells. In vitro toxicity is the scientific analysis of the effect of toxic chemical substances on cultured bacteria or mammalian cells. In our work Manganese–4,5-Diazafluoren-9-one complex was prepared and its cytotoxicity was studied by standard MTT Assay in Cervical carcinoma cells HeLa. The result was compared with the normal fibroblast cell to check its influence on normal cells. On comparing the results, the complex is found to be more toxic to cervical carcinoma cells than the normal fibroblast cells. The photocatalytic activity of the complex was studied on the basis of the decomposition reaction of methylene blue dye in presence of the complex. The compound [Mn(C11H6N2O)2(NCS)2] was synthesised and characterised by various spectroscopic methods and the structure was confirmed by single crystal XRD analysis. The molecular structure of the complex was optimized using density functional theory (DFT) at the B3LYP/6–311 G (d,p) level. The smallest HOMO–LUMO energy gap (0.66 eV) indicates the soft acid nature of the complex

    Designing of promising Tromethamine-Diflunisal-Pyrrole combinations based on COX binding, drug-properties and safety

    No full text
    732-740Gastric issues that accompany the use of NSAIDs (Non-steroid anti-inflammatory drugs) are always a serious global concern. The inhibition of the Cycloxygenase enzyme (COX) limits the prostaglandin synthesis and thereby facilitates the control of pains, inflammation etc. But this creates gastric issues due to the reduction of mucin formation in the stomach. The present work was performed to create a modification in the structure of NSAID drug Diflunisal, to reduce the gastric effect of acidic moiety in the structure and elevate the overall biological properties. The drug Tromethamine, a base used in acidosis treatment was substituted to reduce the acidic issues. The heterocyclic compound pyrrole was substituted to elevate the properties. Neutral, salt, amide and ester combinations of Tromethamine-Diflunisal were designed, optimized and docked to the crystal structures of COX-1 (PDB ID: 6Y3C) and COX-2 (PDB ID: 5IKR) enzymes, using PyRx software. The combinations with lower COX-1 and COX-2 binding energies relative to Diflunisal were noted. It was analysed if the combinations of Diflunisal, Tromethamine and pyrrole lowers drug-properties or induce toxicities. Pyrrole substitution at position R4 was not found favourable for COX binding. Among the favourable combinations, DF19 is the Diflunisal- Pyrrole-Tromethamine combination, equally favourable for binding to COX targets

    Computational studies on the structural variations of MAO-A and MAO-B inhibitors - An in silico docking approach

    Get PDF
    The neurological disorder is a concerning problem in the present social scenario. The malfunction of the monoamine oxidase (MAO) enzyme is the responsible factor behind this disorder because this enzyme regulates the metabolism of monoamine neurotransmitters. This work aimed to design and propose the best MAO inhibitors through extensive computational analysis so that the favourable drug-like molecules could be identified for future synthesis. The drugs selected in this study were three MAO-A inhibitors namely Moclobemide, Tolxatone and Brofaromine and two MAO-B inhibitors namely Selegiline and Rasagiline. By substituting hydrophilic and hydrophobic groups at the specified positions, structural variations were designed for each drug. The designed variations and their parent drugs were optimized (basis set is B3LYP/6-311G(d, p)) and the optimized structures were docked to the target using PyRx software. The binding energy of each variation was compared to that of parent drug. The drug-likeness, physicochemical properties (solubility, polarity, flexibility, gastrointestinal absorption, saturation etc.) and toxicity of the lower binding energy variations were analysed using the swissADME, Osiris property explorer and ProTox-II servers. The interacting residues of the enzymes were obtained from the LigPlot+ program. The safe and low binding energy variations with favourable drug properties are suggested for further drug researc

    Proceedings of International Web Conference in Civil Engineering for a Sustainable Planet

    No full text
    This proceeding contains articles of the various research ideas of the academic community and practitioners accepted at the "International Web Conference in Civil Engineering for a Sustainable Planet (ICCESP 2021)". ICCESP 2021 is being Organized by the Habilete Learning Solutions, Kollam in Collaboration with American Society of Civil Engineers (ASCE), TKM College of Engineering, Kollam, and Baselios Mathews II College of Engineering, Kollam, Kerala, India. Conference Title: International Web Conference in Civil Engineering for a Sustainable PlanetConference Acronym: ICCESP 2021Conference Date: 05–06 March 2021Conference Location: Online (Virtual Mode)Conference Organizer: Habilete Learning Solutions, Kollam, Kerala, IndiaCollaborators: American Society of Civil Engineers (ASCE), TKM College of Engineering, Kollam, and Baselios Mathews II College of Engineering, Kollam, Kerala, India
    corecore