80 research outputs found

    The arabidopsis SAL1-PAP pathway: A case study for integrating chloroplast retrograde, light and hormonal signaling in modulating plant growth and development?

    Get PDF
    Plant growth and development are dependent on chloroplast development and function. Constitutive high level accumulation of a chloroplast stress signal, 3'-phosphoadenosine-5'-phosphate (PAP), confers drought tolerance to plants, but slow downs and alters plant growth and development. PAP, a by-product of sulfur metabolism, is maintained at very low levels by the SAL1 phosphatase during vegetative growth of Arabidopsis and accumulates in rosettes during drought and excess light. Eight independent forward genetic screens in Arabidopsis identified SAL1 as the regulator of multiple phenotypes related to stress responses, hormonal signaling and/or perception. In this perspective article, we collate all the sal1 phenotypes published in the past two decades, and distill the different pathways affected. Our meta-analysis of publicly available sal1 microarray data coupled to preliminary hormonal treatment and profiling results on sal1 indicate that homeostasis and responses to multiple hormones in sal1 are altered during rosette growth, suggesting a potential connection between SAL1-PAP stress retrograde pathway and hormonal signaling. We propose the SAL1-PAP pathway as a case study for integrating chloroplast retrograde signaling, light signaling and hormonal signaling in plant growth and morphogenesis.We received financial support from the ARC Centre of Excellence in Plant Energy Biology (CE140100008) and scholarships to SYP (ANU), and KXC (ANU). KXC was also funded by a Postdoctoral Fellowship from Research Foundation-Flanders (FWO)

    Redox feedback regulation of ANAC089 signaling alters seed germination and stress response

    Get PDF
    The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.Peer reviewe

    The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development?

    Get PDF
    Plant growth and development are dependent on chloroplast development and function. Constitutive high level accumulation of a chloroplast stress signal, 3′-phosphoadenosine-5′-phosphate (PAP), confers drought tolerance to plants, but slow downs and alters plant growth and development. PAP, a by-product of sulfur metabolism, is maintained at very low levels by the SAL1 phosphatase during vegetative growth of Arabidopsis and accumulates in rosettes during drought and excess light. Eight independent forward genetic screens in Arabidopsis identified SAL1 as the regulator of multiple phenotypes related to stress responses, hormonal signaling and/or perception. In this perspective article, we collate all the sal1 phenotypes published in the past two decades, and distill the different pathways affected. Our meta-analysis of publicly available sal1 microarray data coupled to preliminary hormonal treatment and profiling results on sal1 indicate that homeostasis and responses to multiple hormones in sal1 are altered during rosette growth, suggesting a potential connection between SAL1-PAP stress retrograde pathway and hormonal signaling. We propose the SAL1-PAP pathway as a case study for integrating chloroplast retrograde signaling, light signaling and hormonal signaling in plant growth and morphogenesis

    Redox feedback regulation of ANAC089 signaling alters seed germination and stress response

    Get PDF
    21 p.-4 fig.-2 tab. 1 graph. abst.The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA,salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.Wethank the Spanish networks BIO2015-68957-REDT and RED2018-102397-T for stimulating discussions, as well as Dr. José M. Carrasco and Dr. Pablo Vera (IBMCP-CSIC) for help with the protein-expression experiments of the PBM. This work was financed by grants EcoSeed Impacts of Environmental Conditions on Seed Quality ‘‘EcoSeed-311840’’ ERC.KBBE.2012.1.1-01;BIO2017-85758-R and CSD2007-00057 (TRANSPLANTA) from the Ministerio de Ciencia, Innovación y Universidades (MICIU) (Spain); SA313P18 and SA137P20 from Junta de Castilla y León; Escalera de Excelencia CLU-2018-04 co-funded by the P.O. FEDER of Castilla y León 2014–2020 Spain (to O.L.); and the PhD and University Teacher Training Fellowship, Spanish Ministry of Science and Education (to P.A.).Peer reviewe

    Effects of the Gibberellin Biosynthetic Inhibitor Uniconazol on Mutants of Arabidopsis

    No full text

    Role of Basal ABA in Plant Growth and Development

    No full text
    Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development
    • …
    corecore