50 research outputs found

    Motor endplate cholinesterase in human skeletal muscle.

    Get PDF
    The activity and properties of cholinesterase (ChE) of the motor endplate and its fractions were studied in isolated human skeletal muscle. This preparation was used since the ChE activity of the membrane preparation was localized only in the motor endplate. The endplate ChE was stable in the isolated membrane for 4 weeks at 4 degrees C. The specific activity of the extracted ChE of human muscle membrane was 29.6% higher than that of the original membrane. Studies with specific substrates and ChE inhibitors indicated that most of the ChE of human muscle membrane and its fractions was acetylcholinesterase, and that the minor component was pseudocholinesterase. A Michaelis-Menten constant of 3.82 mM was estimated in the endplate ChE, and 0.88 mM in the extracted ChE of the endplate. The extracted human endplate ChE was separated into three fractions by Sephadex G-200 chromatography, and into two fractions by acrylamide gel electrophoresis.</p

    Cholinesterase Activity of the Motor Endplate in Rat Intercostal Muscle

    Get PDF
    Cholinesterase activity was localized solely in the motor endplate of the membrane in rate intercostal muscle. The diameter of rat motor endplates in the gradient dimension was 31.9 micrometers. The cholinesterase activity per unit protein of the soluble fraction of rat muscle membrane was 35.6% higher than the original membrane. From studies with specific substrates and cholinesterase inhibitors, the cholinesterase activity of rat muscle membrane and its soluble fraction consists of more than 90% acetylcholinesterase and less than 10% pseudocholinesterase.</p

    Cholinesterase of skeletal muscle and its subcellular components.

    Get PDF
    The cholinesterase activity of skeletal muscle and its subcellular components, including motor endplates, was compared chemically in human, mouse and rat. The total cholinesterase activity of muscle per unit protein was in the descending order of human, mouse and rat. Cholinesterase was present in all subcellular components fractionated by differential centrifugation, and was greatest in the microsome fraction followed, in descending order, by the mitochondria, myofibril, and supernatant fractions. Each of these fractions had greater cholinesterase activity in human muscle than in mouse muscle, and in mouse muscle than in rat muscle. The ratio of the activity of the microsome fraction to the activity of muscle homogenate was 11.1 in human, 4.6 in mouse and 3.4 in rat. Because of its relatively greater proportion, the myofibril fraction seems to contribute most to the total cholinesterase activity of muscle. Muscle membrane contained high cholinesterase activity of motor endplates, and the activity was greater than the activity of the microsome fraction in rat. Cholinesterase activity per motor endplate was in the descending order of rat, human and mouse, and the variation was less than the variation in the total muscle cholinesterase activity among these species.</p

    Inhibition of human motor endplate cholinesterase by anticholinesterase compounds.

    Get PDF
    The inhibition of human motor endplate cholinesterase by anticholinesterase compounds was studied using isolated muscle membrane preparation. Ambenonium was most potent, and edrophonium was least potent in inhibiting motor endplate cholinesterase. The slope of the regression line for inhibition of motor endplate cholinesterase was greatest for ambenonium, and smallest for neostigmine and edrophonium. These compounds were less potent inhibitors of plasma cholinesterase. Ambenonium was more specific, and other compounds were less specific inhibitors of motor endplate cholinesterase. In myasthenic patients, these compounds produced adequate inhibition of motor endplate cholinesterase even in the presence of relatively mild plasma cholinesterase inhibition.</p

    Time-Lapse Imaging Reveals Symmetric Neurogenic Cell Division of GFAP-Expressing Progenitors for Expansion of Postnatal Dentate Granule Neurons

    Get PDF
    Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore