23 research outputs found

    Management of systemic sclerosis‐associated interstitial lung disease in the current era

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154421/1/apl13799_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154421/2/apl13799.pd

    Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation

    Full text link
    Significance: Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. Recent Advances: Over the past decade, we and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using computational models to improve clinical translation. In silico modeling has been suggested as a computationally based framework for integrating data derived from basic biology experiments as well as preclinical and clinical studies. Critical Issues: Extensive studies in cells, mice, and human blunt trauma patients have led us to suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-maintaining inflammation that drives the early activation of both classical innate and more recently recognized lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly affect the propagation of inflammation across multiple body compartments. Future Directions: These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets. Antioxid. Redox Signal. 23, 1370?1387.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140310/1/ars.2015.6398.pd

    A Dynamic View of Trauma/Hemorrhage-Induced Inflammation in Mice: Principal Drivers and Networks

    Get PDF
    Background: Complex biological processes such as acute inflammation induced by trauma/hemorrhagic shock/ (T/HS) are dynamic and multi-dimensional. We utilized multiplexing cytokine analysis coupled with data-driven modeling to gain a systems perspective into T/HS. Methodology/Principal Findings: Mice were subjected to surgical cannulation trauma (ST) ± hemorrhagic shock (HS; 25 mmHg), and followed for 1, 2, 3, or 4 h in each case. Serum was assayed for 20 cytokines and NO2-/NO3-. These data were analyzed using four data-driven methods (Hierarchical Clustering Analysis [HCA], multivariate analysis [MA], Principal Component Analysis [PCA], and Dynamic Network Analysis [DyNA]). Using HCA, animals subjected to ST vs. ST + HS could be partially segregated based on inflammatory mediator profiles, despite a large overlap. Based on MA, interleukin [IL]-12p40/p70 (IL-12.total), monokine induced by interferon-γ (CXCL-9) [MIG], and IP-10 were the best discriminators between ST and ST/HS. PCA suggested that the inflammatory mediators found in the three main principal components in animals subjected to ST were IL-6, IL-10, and IL-13, while the three principal components in ST + HS included a large number of cytokines including IL-6, IL-10, keratinocyte-derived cytokine (CXCL-1) [KC], and tumor necrosis factor-α [TNF-α]. DyNA suggested that the circulating mediators produced in response to ST were characterized by a high degree of interconnection/complexity at all time points; the response to ST + HS consisted of different central nodes, and exhibited zero network density over the first 2 h with lesser connectivity vs. ST at all time points. DyNA also helped link the conclusions from MA and PCA, in that central nodes consisting of IP-10 and IL-12 were seen in ST, while MIG and IL-6 were central nodes in ST + HS. Conclusions/Significance: These studies help elucidate the dynamics of T/HS-induced inflammation, complementing other forms of dynamic mechanistic modeling. These methods should be applicable to the analysis of other complex biological processes

    An Adequately Robust Early TNF-α Response Is a Hallmark of Survival Following Trauma/Hemorrhage

    Get PDF
    Background: Trauma/hemorrhagic shock (T/HS) results in cytokine-mediated acute inflammation that is generally considered detrimental. Methodology/Principal Findings: Paradoxically, plasma levels of the early inflammatory cytokine TNF-α (but not IL-6, IL-10, or NO2-/NO3-) were significantly elevated within 6 h post-admission in 19 human trauma survivors vs. 4 non-survivors. Moreover, plasma TNF-α was inversely correlated with Marshall Score, an index of organ dysfunction, both in the 23 patients taken together and in the survivor cohort. Accordingly, we hypothesized that if an early, robust pro-inflammatory response were to be a marker of an appropriate response to injury, then individuals exhibiting such a response would be predisposed to survive. We tested this hypothesis in swine subjected to various experimental paradigms of T/HS. Twenty-three anesthetized pigs were subjected to T/HS (12 HS-only and 11 HS + Thoracotomy; mean arterial pressure of 30 mmHg for 45-90 min) along with surgery-only controls. Plasma obtained at pre-surgery, baseline post-surgery, beginning of HS, and every 15 min thereafter until 75 min (in the HS only group) or 90 min (in the HS + Thoracotomy group) was assayed for TNF-α, IL-6, IL-10, and NO2-/NO3-. Mean post-surgery±HS TNF-α levels were significantly higher in the survivors vs. non-survivors, while non-survivors exhibited no measurable change in TNF-α levels over the same interval. Conclusions/Significance: Contrary to the current dogma, survival in the setting of severe, acute T/HS appears to be associated with an immediate increase in serum TNF-α. It is currently unclear if this response was the cause of this protection, a marker of survival, or both. This abstract won a Young Investigator Travel Award at the SHOCK 2008 meeting in Cologne, Germany. © 2009 Namas et al

    Sarcoidosis of Hands

    No full text

    Breast calcinosis in a patient with Dermatomyositis

    Get PDF

    Embolic Stroke as the Initial Manifestation of Systemic Lupus Erythematosus

    Get PDF
    We present a case of a 21-year-old African-American female with no significant medical history, who presented to the emergency department with a one-week history of blurry and double vision. Ophthalmology evaluation revealed bilateral retinal artery occlusion. Further workup with imaging of the brain was consistent with an ischemic stroke. Hereditary hypercoagulable workup was unremarkable and initial testing for antiphospholipid syndrome was positive. She underwent transesophageal echocardiogram (TEE), which showed severe mitral regurgitation and thickening of mitral valve leaflets consistent with Libman-Sacks endocarditis. Autoimmune workup was positive for IF-ANA, anti-RNP, and anti-Smith antibody. She fulfilled 4/11 of the ACR criteria and met 5 of the SLICC (Systemic Lupus International Collaborating Clinics) criteria for lupus (nonscaring alopecia, thrombocytopenia, positive ANA, and positive anti-Smith and positive anti-phospholipid antibodies). This case highlights the importance of early recognition of underlying connective tissue diseases and timely management of these diseases in young patients with no previous manifestations of diseases

    Risk factors for lung function decline in systemic sclerosis-associated interstitial lung disease in a large single-center cohort

    No full text
    International audienceOBJECTIVES: The aim of this study was to identify risk factors of percent predicted forced vital capacity (ppFVC) decline in patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD). METHODS: We identified 484 patients with SSc who had HRCT Chest, of which 312 with ILD. Those with serial pulmonary function tests were included in a longitudinal analysis (n = 184). Linear mixed effect models were fitted to assess the decline in ppFVC over time, and to explore the effect of demographics and baseline characteristics on ppFVC decline. RESULTS: The majority of SSc-ILD patients were female (76.3%) and 51.3% had diffuse cutaneous subset. The mean (SD) age was 53.6 (12.7) years, median disease duration since first non-RP symptoms was 2.6 years, and 48.4% of the patients had ILD extent >20% on HRCT. In the univariate analysis, longer disease duration (>2.37 years), ILD extent > 20%, and anti-topoisomerase I (ATA) positivity were significantly associated with ppFVC decline. In the multivariate analysis, the only statistically significant variable associated with ppFVC decline was ATA positivity. The overall group’s mean decline in ppFVC was -0.28% (p-value 0.029), with -0.13% (N = 163) in those who were alive and -8.28% (p-value 0.0002 for the change in ppFVC trajectory) in patients who died within 2 years. CONCLUSION: Our study confirms that ppFVC is a marker of survival in SSc-ILD, supporting its use for risk stratification to identify patients who may benefit from earlier interventions and treatment. Our study also supports the role of ATA positivity as a predictive marker for ppFVC decline in this population
    corecore