15,854 research outputs found

    Production of the pentaquark Θ+\Theta^+ in npnp scattering

    Full text link
    We study npΛΘ+np\to \Lambda\Theta^{+} and npΣ0Θ+np\to \Sigma^{0}\Theta^{+} processes for both of the positive and negative parities of the Θ+\Theta^{+}. Employing the effective chiral Lagrangians for the KNYKNY and KNYK^*NY interactions, we calculate differential cross sections as well as total cross sections for the npΣ0Θ+np\to \Sigma^0 \Theta^+ and npΛΘ+np\to \Lambda\Theta^+ reactions. The total cross sections for the positive-parity Θ+\Theta^+ turn out to be approximately ten times larger than those for the negative parity Θ+\Theta^+ in the range of the CM energy sths3.5GeV\sqrt{s}_{\rm th}\le \sqrt{s}\le 3.5 {\rm GeV}. The results are rather sensitive to the mechanism of KK exchanges in the tt -- channel.Comment: 9 pages and 11 figure

    Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers

    Get PDF
    Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor

    Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters

    Full text link
    The freezing of metal nanoclusters such as gold, silver, and copper exhibits a novel structural evolution. The formation of the icosahedral (Ih) structure is dominant despite its energetic metastability. This important phenomenon, hitherto not understood, is studied by calculating free energies of gold nanoclusters. The structural transition barriers have been determined by using the umbrella sampling technique combined with molecular dynamics simulations. Our calculations show that the formation of Ih gold nanoclusters is attributed to the lower free energy barrier from the liquid to the Ih phases compared to the barrier from the liquid to the face-centered-cubic crystal phases

    Multi-group linear turbo equalization with intercell interference cancellation for MC-CDMA cellular systems.

    Get PDF
    In this paper, we investigate multi-group linear turbo equalization using single antenna interference cancellation (SAIC) techniques to mitigate the intercell interference for multi-carrier code division multiple access (MC-CDMA) cellular systems. It is important for the mobile station to mitigate the intercell interference as the performance of the users close to cell edge is mainly degraded by the intercell interference. The complexity of the proposed iterative detector and receiver is low as the one-tap minimum mean square error (MMSE) equalizer is employed for mitigating the intracell interference, while a simple group interference canceller is used for suppressing the intercell interference. Simulation results show that the proposed iterative detector and receiver can mitigate the intercell interference effectively through iterations for both uncoded and coded signals

    Single-photon detection timing jitter in a visible light photon counter

    Full text link
    Visible light photon counters (VLPCs) offer many attractive features as photon detectors, such as high quantum efficiency and photon number resolution. We report measurements of the single-photon timing jitter in a VLPC, a critical performance factor in a time-correlated single-photon counting measurement, in a fiber-coupled closed-cycle cryocooler. The measured timing jitter is 240 ps full-width-at-half-maximum at a wavelength of 550 nm, with a dark count rate of 25 000 counts per second. The timing jitter increases modestly at longer wavelengths to 300 ps at 1000 nm, and increases substantially at lower bias voltages as the quantum efficiency is reduced
    corecore