2 research outputs found

    β‑Amyloid and α‑Synuclein Cooperate To Block SNARE-Dependent Vesicle Fusion

    No full text
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ<sub>42</sub>-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ<sub>42</sub> oligomers (or aggregates) or the products of αS incubated without Aβ<sub>42</sub> have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction

    Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off–On–Off Cycles for Multicolor Patterning and Super-Resolution

    No full text
    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched “off” to (ii) photoactivated “on” as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened “off” by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from “off” to “on” and “off” by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated
    corecore