4 research outputs found

    Number Sequence Prediction Problems for Evaluating Computational Powers of Neural Networks

    Full text link
    Inspired by number series tests to measure human intelligence, we suggest number sequence prediction tasks to assess neural network models' computational powers for solving algorithmic problems. We define the complexity and difficulty of a number sequence prediction task with the structure of the smallest automaton that can generate the sequence. We suggest two types of number sequence prediction problems: the number-level and the digit-level problems. The number-level problems format sequences as 2-dimensional grids of digits and the digit-level problems provide a single digit input per a time step. The complexity of a number-level sequence prediction can be defined with the depth of an equivalent combinatorial logic, and the complexity of a digit-level sequence prediction can be defined with an equivalent state automaton for the generation rule. Experiments with number-level sequences suggest that CNN models are capable of learning the compound operations of sequence generation rules, but the depths of the compound operations are limited. For the digit-level problems, simple GRU and LSTM models can solve some problems with the complexity of finite state automata. Memory augmented models such as Stack-RNN, Attention, and Neural Turing Machines can solve the reverse-order task which has the complexity of simple pushdown automaton. However, all of above cannot solve general Fibonacci, Arithmetic or Geometric sequence generation problems that represent the complexity of queue automata or Turing machines. The results show that our number sequence prediction problems effectively evaluate machine learning models' computational capabilities.Comment: Accepted to 2019 AAAI Conference on Artificial Intelligenc

    Neural Attention Memory

    Full text link
    We propose a novel perspective of the attention mechanism by reinventing it as a memory architecture for neural networks, namely Neural Attention Memory (NAM). NAM is a memory structure that is both readable and writable via differentiable linear algebra operations. We explore three use cases of NAM: memory-augmented neural network (MANN), few-shot learning, and efficient long-range attention. First, we design two NAM-based MANNs of Long Short-term Memory (LSAM) and NAM Turing Machine (NAM-TM) that show better computational powers in algorithmic zero-shot generalization tasks compared to other baselines such as differentiable neural computer (DNC). Next, we apply NAM to the N-way K-shot learning task and show that it is more effective at reducing false positives compared to the baseline cosine classifier. Finally, we implement an efficient Transformer with NAM and evaluate it with long-range arena tasks to show that NAM can be an efficient and effective alternative for scaled dot-product attention.Comment: Preprint. Under revie

    Defensive ML: Defending Architectural Side-channels with Adversarial Obfuscation

    Full text link
    Side-channel attacks that use machine learning (ML) for signal analysis have become prominent threats to computer security, as ML models easily find patterns in signals. To address this problem, this paper explores using Adversarial Machine Learning (AML) methods as a defense at the computer architecture layer to obfuscate side channels. We call this approach Defensive ML, and the generator to obfuscate signals, defender. Defensive ML is a workflow to design, implement, train, and deploy defenders for different environments. First, we design a defender architecture given the physical characteristics and hardware constraints of the side-channel. Next, we use our DefenderGAN structure to train the defender. Finally, we apply defensive ML to thwart two side-channel attacks: one based on memory contention and the other on application power. The former uses a hardware defender with ns-level response time that attains a high level of security with half the performance impact of a traditional scheme; the latter uses a software defender with ms-level response time that provides better security than a traditional scheme with only 70% of its power overhead.Comment: Preprint. Under revie

    Neural Sequence-to-grid Module for Learning Symbolic Rules

    Full text link
    Logical reasoning tasks over symbols, such as learning arithmetic operations and computer program evaluations, have become challenges to deep learning. In particular, even state-of-the-art neural networks fail to achieve \textit{out-of-distribution} (OOD) generalization of symbolic reasoning tasks, whereas humans can easily extend learned symbolic rules. To resolve this difficulty, we propose a neural sequence-to-grid (seq2grid) module, an input preprocessor that automatically segments and aligns an input sequence into a grid. As our module outputs a grid via a novel differentiable mapping, any neural network structure taking a grid input, such as ResNet or TextCNN, can be jointly trained with our module in an end-to-end fashion. Extensive experiments show that neural networks having our module as an input preprocessor achieve OOD generalization on various arithmetic and algorithmic problems including number sequence prediction problems, algebraic word problems, and computer program evaluation problems while other state-of-the-art sequence transduction models cannot. Moreover, we verify that our module enhances TextCNN to solve the bAbI QA tasks without external memory.Comment: 9 pages, 9 figures, AAAI 202
    corecore