15 research outputs found

    Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy

    Get PDF
    Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a \u27persister-like\u27 behavior and are attenuated by sensitive cells; they also appear to \u27educate\u27 sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer

    Meta-analysis of nature conservation values in Asia & Oceania: Data heterogeneity and benefit transfer issues

    Get PDF
    We conduct a meta-analysis (MA) of around 100 studies valuing nature conservation in Asia and Oceania. Dividing our dataset into two levels of heterogeneity in terms of good characteristics (endangered species vs. nature conservation more generally) and valuation methods, we show that the degree of regularity and conformity with theory and empirical expectations is higher for the more homogenous dataset of contingent valuation of endangered species. For example, we find that willingness to pay (WTP) for preservation of mammals tends to be higher than other species and that WTP for species preservation increases with income. Increasing the degree of heterogeneity in the valuation data, however, preserves much of the regularity, and the explanatory power of some of our models is in the range of other MA studies of goods typically assumed to be more homogenous (such as water quality). Subjecting our best MA models to a simple test forecasting values for out-of-sample observations, shows median (mean) forecasting errors of 24 (46) percent for endangered species and 46 (89) percent for nature conservation more generally, approaching levels that may be acceptable in benefit transfer for policy use. We recommend that the most prudent MA practice is to control for heterogeneity in regressions and sensitivity analysis, rather than to limit datasets by non-transparent criteria to a level of heterogeneity deemed acceptable to the individual analyst. However, the trade-off will always be present and the issue of acceptable level of heterogeneity in MA is far from settle

    Small Cell Lung Cancer from Traditional to Innovative Therapeutics: Building a Comprehensive Network to Optimize Clinical and Translational Research

    No full text
    Small cell lung cancer (SCLC) is an aggressive, complex disease with a distinct biology that contributes to its poor prognosis. Management of SCLC is still widely limited to chemotherapy and radiation therapy, and research recruitment still poses a considerable challenge. Here, we review the current standard of care for SCLC and advances made in utilizing immunotherapy. We also highlight research in the development of targeted therapies and emphasize the importance of a team-based approach to make clinical advances. Building an integrative network between an academic site and community practice sites optimizes biomarker and drug target discovery for managing and treating a difficult disease like SCLC

    A Systems Biology Approach for Addressing Cisplatin Resistance in Non-Small Cell Lung Cancer

    No full text
    Translational research in medicine, defined as the transfer of knowledge and discovery from the basic sciences to the clinic, is typically achieved through interactions between members across scientific disciplines to overcome the traditional silos within the community. Thus, translational medicine underscores ‘Team Medicine’, the partnership between basic science researchers and clinicians focused on addressing a specific goal in medicine. Here, we highlight this concept from a City of Hope perspective. Using cisplatin resistance in non-small cell lung cancer (NSCLC) as a paradigm, we describe how basic research scientists, clinical research scientists, and medical oncologists, in true ‘Team Science’ spirit, addressed cisplatin resistance in NSCLC and identified a previously approved compound that is able to alleviate cisplatin resistance in NSCLC. Furthermore, we discuss how a ‘Team Medicine’ approach can help to elucidate the mechanisms of innate and acquired resistance in NSCLC and develop alternative strategies to overcome drug resistance

    Phenotypic Switching of Naïve T Cells to Immune-Suppressive Treg-Like Cells by Mutant KRAS

    Get PDF
    Oncogenic (mutant) Ras protein Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes uncontrolled proliferation, altered metabolism, and loss of genome integrity in a cell-intrinsic manner. Here, we demonstrate that CD4(+) T cells when incubated with tumor-derived exosomes from mutant (MT) KRAS non-small-cell lung cancer (NSCLC) cells, patient sera, or a mouse xenograft model, induce phenotypic conversion to FOXP3(+) Treg-like cells that are immune-suppressive. Furthermore, transfecting T cells with MT KRAS cDNA alone induced phenotypic switching and mathematical modeling supported this conclusion. Single-cell sequencing identified the interferon pathway as the mechanism underlying the phenotypic switch. These observations highlight a novel cytokine-independent, cell-extrinsic role for KRAS in T cell phenotypic switching. Thus, targeting this new class of Tregs represents a unique therapeutic approach for NSCLC. Since KRAS is the most frequently mutated oncogene in a wide variety of cancers, the findings of this investigation are likely to be of broad interest and have a large scientific impact

    Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors

    No full text
    Summary: This study investigates the role of integrin β4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function

    Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy

    No full text
    Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a ‘persister-like’ behavior and are attenuated by sensitive cells; they also appear to ‘educate’ sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer

    Exploring markers of immunoresponsiveness in papillary thyroid carcinoma and future treatment strategies

    No full text
    Background The study summarizes the potential use of immunotherapy for BRAF-mutated papillary thyroid cancer (PTC) by analyzing the immune profile of City of Hope PTC patient samples and comparing them to the thyroid dataset available in the TCGA database.Materials and methods PTC cases with available formalin-fixed paraffin-embedded archived tumor tissue were identified. RNA was extracted from the tumor tissue and analyzed by NanoString to evaluate their immune gene expression profile. Immunohistochemistry was used to determine the expression of immune suppressive genes and lymphocytic infiltration into the tumor tissue. Thyroid cancer cell lines (MDA-T32, MDA-T68, MDA-T85, and MDA-T120) were used to determine the correlation between the BRAF inhibition and CD274 expression.Results The study found that PTC cases with BRAF mutations had higher expression of immune checkpoint markers CD274 and CTLA4, as well as higher tumor-infiltrating lymphocytes, particularly CD4+T cells. Additionally, the study identified immunosuppressive markers expressed by tumor cells like CD73, CD276, and CD200 that could be targeted for immunotherapy. Further experiments using PTC cell lines lead to the conclusion that CD274 expression correlates with BRAF activity and that inhibitors of BRAF could potentially be used in combination with immunotherapy to treat PTC.Conclusions These findings suggest that PTC cases with BRAF mutations or high expression may be correlated with an immune hot signature and could benefit from immunotherapeutic strategies
    corecore