2 research outputs found

    High order entropy stable schemes for the quasi-one-dimensional shallow water and compressible Euler equations

    Full text link
    High order schemes are known to be unstable in the presence of shock discontinuities or under-resolved solution features for nonlinear conservation laws. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi-discrete entropy inequality independently of discretization parameters. This work extends high order entropy stable schemes to the quasi-1D shallow water equations and the quasi-1D compressible Euler equations, which model one-dimensional flows through channels or nozzles with varying width. We introduce new non-symmetric entropy conservative finite volume fluxes for both sets of quasi-1D equations, as well as a generalization of the entropy conservation condition to non-symmetric fluxes. When combined with an entropy stable interface flux, the resulting schemes are high order accurate, conservative, and semi-discretely entropy stable. For the quasi-1D shallow water equations, the resulting schemes are also well-balanced

    TROPHY: Trust Region Optimization Using a Precision Hierarchy

    No full text
    We present an algorithm to perform trust-region-based optimization for nonlinear unconstrained problems. The method selectively uses function and gradient evaluations at different floating-point precisions to reduce the overall energy consumption, storage, and communication costs; these capabilities are increasingly important in the era of exascale computing. In particular, we are motivated by a desire to improve computational efficiency for massive climate models. We employ our method on two examples: the CUTEst test set and a large-scale data assimilation problem to recover wind fields from radar returns. Although this paper is primarily a proof of concept, we show that if implemented on appropriate hardware, the use of mixed-precision can significantly reduce the computational load compared with fixed-precision solvers.Comment: 14 pages, 2 figures, 2 table
    corecore