233 research outputs found

    Orbitally induced hierarchy of exchange interactions in zigzag antiferromagnetic state of honeycomb silver delafossite Ag3Co2SbO6

    Full text link
    We report the revised crystal structure, static and dynamic magnetic properties of quasi-two dimensional honeycomb-lattice silver delafossite Ag3Co2SbO6. The magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic long range order at low temperatures with N\'eel temperature TN ~ 21.2 K. In addition, the magnetization curves revealed a field-induced (spin-flop type) transition below TN in moderate magnetic fields. The GGA+U calculations show the importance of the orbital degrees of freedom, which maintain a hierarchy of exchange interaction in the system. The strongest antiferromagnetic exchange coupling was found in the shortest Co-Co pairs and is due to direct and superexchange interactions between the half-filled xz+yz orbitals pointing directly to each other. The other four out of six nearest neighbor exchanges within the cobalt hexagon are suppressed, since for these bonds active half-filled orbitals turned out to be parallel and do not overlap. The electron spin resonance (ESR) spectra reveal a Gaussian shape line attributed to Co2+ ion in octahedral coordination with average effective g-factor g=2.3+/-0.1 at room temperature and shows strong divergence of ESR parameters below 120 K, which imply an extended region of short-range correlations. Based on the results of magnetic and thermodynamic studies in applied fields, we propose the magnetic phase diagram for the new honeycomb-lattice delafossite

    COMPREHENSIVE ASSESSMENT THE QUALITY OF LIFE IN PATIENTS WITH ESOPHAGEAL ACHALASIA OF III-IV STAGES AFTER EZOPHAGOCARDIOFUNDOPLASTY IN THE DISTANT POSTOPERATIVE PERIOD

    Get PDF
    The choice of an optimum method of surgical treatment in case of esophageal achalasia of III-IV stage is still a pressing problem. Geller's operation, balloon dilatation and other minimally invasive methods do not allow to achieve the desired effect of smoothing dysphagia. On the other hand, a number of surgeons in case of III-IV stage consider esophageal resection to be more preferable. Due to the attempt to find an optimum method of conservation of the esophagus in case of esophageal achalasia a laparoscopic esophagocardiofundoplasty operation with partial Hill fundoplication was developed. The aim of the research is to assess the long term results of the operation in terms of the quality of life and effectiveness of treatment. The cases of 51 patients suffering from esophageal achalasia of III-IV stage during the period from 2002 to 2016 were included in the research and these cases received special methods developed by the author. The quality of life was assessed with the help of specific questionnaires GERD-HRQL, GIQLI, the dynamics of changes in the weight of the body and the Eckardt scale of indicating the effectiveness of treatment. The results of the research show decrease of indicators on the Eckardt scale from 9.2 ± 0.5 to 1.9 ± 0.2 points, the GERD questionnaire from 17.3 ± 0.8 to 5.9 ± 0.7 points and increase of indicators according to the GIQLI questionnaire from 92.3 ± 1.2 to 122.9 ± 1.5 points and increase in the weight of the body from 22.9 ± 0.6 to 24.7 ± 0.6 kg

    Synthesis and characterization of MnCrO4, a new mixed-valence antiferromagnet

    Full text link
    A new orthorhombic phase, MnCrO4, isostructural with MCrO 4 (M = Mg, Co, Ni, Cu, Cd) was prepared by evaporation of an aqueous solution, (NH4)2Cr2O7 + 2 Mn(NO 3)2, followed by calcination at 400 C. It is characterized by redox titration, Rietveld analysis of the X-ray diffraction pattern, Cr K edge and Mn K edge XANES, ESR, magnetic susceptibility, specific heat and resistivity measurements. In contrast to the high-pressure MnCrO4 phase where both cations are octahedral, the new phase contains Cr in a tetrahedral environment suggesting the charge balance Mn2+Cr 6+O4. However, the positions of both X-ray absorption K edges, the bond lengths and the ESR data suggest the occurrence of some mixed-valence character in which the mean oxidation state of Mn is higher than 2 and that of Cr is lower than 6. Both the magnetic susceptibility and the specific heat data indicate an onset of a three-dimensional antiferromagnetic order at TN ≈ 42 K, which was confirmed also by calculating the spin exchange interactions on the basis of first principles density functional calculations. Dynamic magnetic studies (ESR) corroborate this scenario and indicate appreciable short-range correlations at temperatures far above T N. MnCrO4 is a semiconductor with activation energy of 0.27 eV; it loses oxygen on heating above 400 C to form first Cr 2O3 plus Mn3O4 and then Mn 1.5Cr1.5O4 spinel. © 2013 American Chemical Society

    Magnetic and quantum entanglement properties of the distorted diamond chain model for azurite

    Full text link
    We present the results of magnetic properties and entanglement of the distorted diamond chain model for azurite using pure quantum exchange interactions. The magnetic properties and concurrence as a measure of pairwise thermal entanglement have been studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. Such a system can be considered as an approximation of the natural material azurite, Cu3(CO3)2(OH)2. For values of exchange parameters, which are taken from experimental results, we study the thermodynamic properties, such as azurite specific heat and magnetic susceptibility. We also have studied the thermal entanglement properties and magnetization plateau of the distorted diamond chain model for azurite

    Magnetic Properties of A2Ni2TeO6 (A = K, Li): Zigzag Order in the Honeycomb Layers of Ni2+ Ions Induced by First and Third Nearest-Neighbor Spin Exchanges

    Full text link
    The static and dynamic magnetic properties and the specific heat of K2Ni2TeO6 and Li2Ni2TeO6 were examined and it was found that they undergo a long-range ordering at TN = 22.8 and 24.4 K, respectively, but exhibit a strong short-range order. At high temperature, the magnetic susceptibilities of K2Ni2TeO6 and Li2Ni2TeO6 are described by a Curie–Weiss law, with Curie-Weiss temperatures Θ of approximately −13 and −20 K, respectively, leading to the effective magnetic moment of about 4.46 ± 0.01 µB per formula unit, as expected for Ni2+ (S = 1) ions. In the paramagnetic region, the ESR spectra of K2Ni2TeO6 and Li2Ni2TeO6 show a single Lorentzianshaped line characterized by the isotropic effective g-factor, g = 2.19 ± 0.01. The energy-mapping analysis shows that the honeycomb layers of A2Ni2TeO6 (A = K, Li) and Li3Ni2SbO6 adopt a zigzag order, in which zigzag ferromagnetic chains are antiferromagnetically coupled, because the third nearest-neighbor spin exchanges are strongly antiferromagnetic while the first nearest-neighbor spin exchanges are strongly ferromagnetic, and that adjacent zigzag-ordered honeycomb layers prefer to be ferromagnetically coupled. The short-range order of the zigzag-ordered honeycomb lattices of K2Ni2TeO6 and Li2Ni2TeO6 is equivalent to that of an antiferromagnetic uniform chain, and is related to the short-range order of the ferromagnetic chains along the direction perpendicular to the chains. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Russian Foundation for Basic Research, РФФИ; Ministry of Education, MOE: 2020R1A6A1A03048004; National Research Foundation of Korea, NRF; Russian Science Foundation, RSF: 22-42-08002; Government Council on Grants, Russian Federation: 075-15-2021-604Funding: This work was supported by the grant 14-03-01122 from the Russian Foundation for Basic Research (VBN), by the Russian Scientific Foundation through Grant No. 22-42-08002, and by the Mega-grant program of the Government of Russian Federation through the project 075-15-2021-604. The work at KHU was financially supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, which was funded by the Ministry of Education (2020R1A6A1A03048004)
    corecore