9,717 research outputs found

    Stability of the Accretion Flows with Stalled Shocks in Core-Collapse Supernovae

    Get PDF
    Bearing in mind the application to the theory of core-collapse supernovae, we performed a global linear analysis on the stability of spherically symmetric accretion flows through a standing shock wave onto a proto neutron star. As unperturbed flows, we adopted the spherically symmetric steady solutions to the Euler equations obtained with realistic equation of state and formulae for neutrino reaction rates taken into account. Then we solved the equations for linear perturbations numerically, and obtained the eigen frequencies and eigen functions. We found (1) the flows are stable for all modes if the neutrino luminosity is lower than ∼1×1052\sim 1\times 10^{52} ergs/s for M˙=1.0M⊙/s\dot{M}=1.0M_{\odot}/{\rm s}. (2) For larger luminosities, the non-radial instabilities are induced, probably via the advection-acoustic cycles. Interestingly, the modes with ℓ=2\ell=2 and 3 become unstable at first for relatively low neutrino luminosities, e.g. ≳2−3×1052\gtrsim 2-3\times 10^{52} ergs/s for the same accretion rate, whereas the ℓ=1\ell=1 mode is the most unstable for higher luminosities, ∼3−7×1052\sim 3-7\times 10^{52} ergs/s. These are all oscillatory modes. (3) For still larger luminosities, ∼7×1052\sim 7\times 10^{52} ergs/s for M˙=1.0M⊙/s\dot{M}=1.0M_{\odot}/{\rm s}, non-oscillatory modes, both radial and non-radial, become unstable. These non-radial modes were identified as convection. We confirmed the results obtained by numerical simulations that the instabilities induced by the advection-acoustic cycles are more important than the convection for lower neutrino luminosities.Comment: 46 pages, 19 figures, Accepted by Ap

    Low-scale Supersymmetry from Inflation

    Full text link
    We investigate an inflation model with the inflaton being identified with a Higgs boson responsible for the breaking of U(1)B-L symmetry. We show that supersymmetry must remain a good symmetry at scales one order of magnitude below the inflation scale, in order for the inflation model to solve the horizon and flatness problems, as well as to account for the observed density perturbation. The upper bound on the soft supersymmetry breaking mass lies between 1TeV and 10^3TeV. Interestingly, our finding opens up a possibility that universes with the low-scale supersymmetry are realized by the inflationary selection. Our inflation model has rich implications; non-thermal leptogenesis naturally works, and the gravitino and moduli problems as well as the moduli destabilization problem can be solved or ameliorated; the standard-model higgs boson receives a sizable radiative correction if the supersymmertry breaking takes a value on the high side ~10^3TeV.Comment: 23pages, 3 figures. v2: references adde

    Interacting Dipoles in Type-I Clathrates: Why Glass-like though Crystal?

    Full text link
    Almost identical thermal properties of type-I clathrate compounds to those of glasses follow naturally from the consideration that off-centered guest ions possess electric dipole moments. Local fields from neighbor dipoles create many potential minima in the configuration space. A theoretical analysis based on two-level tunneling states demonstrates that interacting dipoles are a key to quantitatively explain the glass-like behaviors of low-temperature thermal properties of type-I clathrate compounds with off-centered guest ions.From this analysis, we predict the existence of a glass transition

    Non-trivial Center Dominance in High Temperature QCD

    Full text link
    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc,T_c, using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323×1632^3\times 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3)Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial Z(3)Z(3) center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature β=100.0 (T≃1058Tc)\beta=100.0 \, (T \simeq10^{58} T_c) remarkably agrees with the temporal propagator of free quarks with the Z(3)Z(3) twisted boundary condition for t/Lt≥0.2t/L_t \geq 0.2, but differs from that with the Z(3)Z(3) trivial boundary condition. As we increase the mass of quarks mqm_q, we find that the thermal ensemble continues to be dominated by the Z(3)Z(3) twisted gauge field configurations as long as mq≤3.0 Tm_q \le 3.0 \, T and above that the Z(3)Z(3) trivial configurations come in. The transition is essentially identical to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks. We argue that the behavior is consistent with the renormalization group analysis at finite temperature.Comment: 16 pages, 9 figures; 4 tables, an appendix adde
    • …
    corecore