1,473 research outputs found
Low temperature behavior of the heavy Fermion Ce3Co4Sn13
The compound Ce3Co4Sn13 is an extremely heavy cubic heavy fermion system with
a low temperature electronic specific heat of order ~4 J/mol-K2. If the
compound is nonmagnetic, it would be one of the heaviest nonmagnetic Ce-based
heavy fermions reported to date and therefore would be expected to lie
extremely close to a quantum critical point. However, a broad peak of unknown
origin is observed at 0.8 K in the specific heat and magnetic susceptibility,
suggesting the possibility of antiferromagnetic order. We present neutron
diffraction data from polycrystalline samples which do not show any sign of
magnetic scattering below 0.8 K. In addition, we present inelastic neutron
scattering data from a single crystal sample which is consistent with the 1.2 K
energy scale for Kondo spin fluctuations determined from specific heat
measurements.Comment: 4 pages, 2 figures, submitted to J. Mag. Mag. Mater. for ICM 200
Anisotropic hysteretic Hall-effect and magnetic control of chiral domains in the chiral spin states of PrIrO
We uncover a strong anisotropy in both the anomalous Hall effect (AHE) and
the magnetoresistance of the chiral spin states of PrIrO. The AHE
appearing below 1.5 K at zero magnetic field shows hysteresis which is most
pronounced for fields cycled along the [111] direction. This hysteresis is
compatible with the field-induced growth of domains composed by the 3-in 1-out
spin states which remain coexisting with the 2-in 2-out spin ice manifold once
the field is removed. Only for fields applied along the [111] direction, we
observe a large positive magnetoresistance and Shubnikov de Haas oscillations
above a metamagnetic critical field. These observations suggest the
reconstruction of the electronic structure of the conduction electrons by the
field-induced spin-texture.Comment: 7 pages and 5 figures (including Supplementary Material), Accepted in
Physical Review Letter
Orbital Switching and the First-Order Insulator-Metal Transition in Paramagnetic V_2O_3
The first-order metal-insulator transition (MIT) in paramagnetic
is studied within the ab-initio scheme LDA+DMFT, which merges the local density
approximation (LDA) with dynamical mean field theory (DMFT). With a fixed value
of the Coulomb , we show how the abrupt pressure driven MIT is
understood in a new picture: pressure-induced decrease of the trigonal
distortion within the strong correlation scenario (which is not obtained within
LDA). We find good quantitative agreement with switch of the orbital
occupation of and the spin state S=1
across the MIT, thermodynamics and resistivity, and the
one-electron spectral function, within this new scenario.Comment: 4 pages, 4 figures, submitted to PR
Orbital-selective Mass Enhancements in Multi-band CaSrRuO Systems Analyzed by the Extended Drude Model
We investigated optical spectra of quasi-two-dimensional multi-band CaSrRuO systems. The extended Drude model analysis on the
ab-plane optical conductivity spectra indicates that the effective mass should
be enhanced near . Based on the sum rule argument, we showed that the
orbital-selective Mott-gap opening for the bands, the widely
investigated picture, could not be the origin of the mass enhancement. We
exploited the multi-band effects in the extended Drude model analysis, and
demonstrated that the intriguing heavy mass state near should come from
the renormalization of the band.Comment: 4 figure
Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)
We use Raman scattering to study spin, charge, and lattice dynamics in
various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by
Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the
electron-phonon interaction strength, (2) an increased temperature-dependence
of the two-magnon energy and linewidth in the antiferromagnetic insulating
phase, and (3) evidence for charge gap development, and hysteresis associated
with the structural phase change, both of which are indicative of a first-order
metal-insulator transition (T_{MI}) and a coexistence of metallic and
insulating components for T < T_{MI}
Structural and magnetic aspects of the metal insulator transition in CaSrRuO
The phase diagram of CaSrRuO has been studied by neutron
diffraction on powder and single-crystalline samples. The experiments reveal
antiferromagnetic order and structural distortions characterized by tilts and
rotations of the RuO-octahedra. There is strong evidence that the
structural details of the isovalent samples tune the magnetic as well as the
electronic behavior. In particular we observe for low Sr-concentration a metal
insulator transition associated with a structural change and magnetic ordering
Pressure-Tuned Collapse of the Mott-Like State in Ca_{n+1}Ru_nO_{3n+1} (n=1,2): Raman Spectroscopic Studies
We report a Raman scattering study of the pressure-induced collapse of the
Mott-like phases of Ca_3Ru_2O_7 (T_N=56 K) and Ca_2RuO_4 (T_N=110 K). The
pressure-dependence of the phonon and two-magnon excitations in these materials
indicate: (i) a pressure-induced collapse of the antiferromagnetic (AF)
insulating phase above P* ~ 55 kbar in Ca_3Ru_2O_7 and P* ~ 5-10 kbar in
Ca_2RuO_4, reflecting the importance of Ru-O octahedral distortions in
stabilizing the AF insulating phase; and (ii) evidence for persistent AF
correlations above the critical pressure of Ca_2RuO_4, suggestive of phase
separation involving AF insulator and ferromagnetic metal phases.Comment: 3 figure
First-Order Transition to Incommensurate Phase with Broken Lattice Rotation Symmetry in Frustrated Heisenberg Model
We study a finite-temperature phase transition in the two-dimensional
classical Heisenberg model on a triangular lattice with a ferromagnetic
nearest-neighbor interaction and an antiferromagnetic
third-nearest-neighbor interaction using a Monte Carlo method. Apart from
a trivial degeneracy corresponding to O(3) spin rotations,the ground state for
has a threefold degeneracy corresponding to 120 degree lattice
rotations. We find that this model exhibits a first-order phase transition with
the breaking of the threefold symmetry when the interaction ratio is
.Comment: 4pages,5figure
- …
