382 research outputs found

    Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    Get PDF
    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites

    Mineralogy of Experimentally Heated Tagish Lake

    Get PDF
    Since the 1980s, more than 20 thermally metamorphosed carbonaceous chondrites (TMCCs) have been found in Antarctica and in hot deserts. The petrology of TMCCs suggests that some C-type asteroids were heated and dehydrated after aqueous alteration. Besides, previous studies indicate that the conditions of thermal metamorphism experienced by these meteorites may have been quite variable. It reflects that metamorphism of the TMCCs was complex

    SEM and TEM Observation of the Surfaces of the Fine-Grained Particles Retrieved from the Muses-C Regio on the Asteroid 25413 Itokawa

    Get PDF
    Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering

    STXM-XANES Analysis of Organic Matter in Dark Clasts and Halite Crystals in Zag and Monahans Meteorites

    Get PDF
    Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals

    Organic Aggregates with (delta)D and delta(sup 15)N Anomalies in the Zag Clast Revealed by STXM and NanoSIMS

    Get PDF
    Xenolithic clasts are often found in a wide variety of meteorite groups. Some ordinary chondrite clasts are interesting since these clasts might have originated from Ceres which shares crossing orbits with a possible ordinary chondrite parent body, Hebe. The Zag meteorite contains a dark clast dominated by saponite, serpentine, carbonates, sulfides, magnetite, minor olivine and pyroxene, which is consistent with formation on a large, carbonaceous, aqueously active body, e.g., Ceres. Abundant large C-rich grains up to 20 microns were found in the Zag clast as well. Such large C-rich grains are unique among any other meteorites in our knowledge, and will provide important clues to decipher the origin of the clast and accretion history. C-rich grains were selected in the Zag dark clast using SEM and approximately 100 nm-thick sections were prepared using a focused ion beam (FIB) at NASA-JSC. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at Advanced Light Source, LBNL, and BL-13A at the Photon Factory, KEK. Subsequently, the FIB section was analyzed for H, C and N isotopic compositions using a CAMECA NanoSIMS 50L ion microprobe at Kochi Institute for Core Sample Research, JAMSTE

    Competing charge transfer pathways at the photosystem II-electrode interface.

    Get PDF
    The integration of the water-oxidation enzyme photosystem II (PSII) into electrodes allows the electrons extracted from water oxidation to be harnessed for enzyme characterization and to drive novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here we carried out protein-film photoelectrochemistry using spinach and Thermosynechococcus elongatus PSII, and we identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway. This undesirable pathway occurs as a result of photo-induced O2 reduction occurring at the chlorophyll pigments and is promoted by the embedment of PSII in an electron-conducting fullerene matrix, a common strategy for enzyme immobilization. Anaerobicity helps to recover the PSII photoresponse and unmasks the onset potentials relating to the QA/QB charge transfer process. These findings impart a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E. Reisner), the U.K. Biology and Biotechnological Sciences Research Council (BB/K010220/1 to E. Reisner), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z.). N.P. was supported by the Winton Fund for the Physics of Sustainability. E. Romero. and R.v.G. were supported by the VU University Amsterdam, the Laserlab-Europe Consortium, the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO, the Advanced Investigator grant (267333, PHOTPROT) from the European Research Council, and the EU FP7 project PAPETS (GA 323901). R.v.G. gratefully acknowledges his `Academy Professor' grant from the Royal Netherlands Academy of Arts and Sciences (KNAW). We would also like to thank Miss Katharina Brinkert and Prof A. William Rutherford for a sample of T. elongatus PSII, and H. v. Roon for preparation of the spinach PSII samples

    The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae

    Get PDF
    Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced
    corecore