104 research outputs found

    Electronic Structures of Fe3xV_{3-x}V_x$Si Probed by Photoemission Spectroscopy

    Full text link
    The electronic structures of the Heusler type compounds Fe3xV_{3-x}V_x$Si in the concentration range between x = 0 and x = 1 have been probed by photoemission spectroscopy (PES). The observed shift of Si 2p core- level and the main valence band structres indicate a chemical potential shift to higher energy with increasing x. It is also clarified that the density of state at Fermi edge is owing to the collaboration of V 3d and Fe 3d derived states. Besides the decrease of the spectral intensity near Fermi edge with increasing x suggests the formation of pseudo gap at large x.Comment: 4 pages, 5 figures, 5 reference

    Variation of strong correlation effects in A-site ordered perovskites CaCu3Ti4-xRuxO12: Photoemission and inverse photoemission studies

    Full text link
    We have systematically studied the strong correlation effects in A-site ordered perovskites CaCu3Ti4-xRuxO12 (x = 0, 1, 3.5, 4) by using photoemission and inverse photoemission spectroscopies. In x = 0, 1, 3.5, the peak positions of the strongly correlated Cu 3d states around -3.8 eV and Ti 3d states around 3.6 eV little change. On the other hand, in x = 4, the Cu 3d states is observed around -2.5 eV. These indicate that Ti plays an important role to retain the strong correlation effects. In addition, the multiplet structures of Cu 3d final states from -8 to -15 eV become weak as Ru increases, indicating the reduction of the localized characters of Cu 3d states. At the Fermi level, we observe the absence of spectral weight in x = 0, 1 and the development of Ru 4d in-gap states between the Cu 3d and Ti 3d peaks in x = 3.5, 4, which give rise to the metal-insulator transition between x = 1 and x = 3.5.Comment: 12 pages, 3 figure

    Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of human papillomavirus (HPV) associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors.</p> <p>Methods</p> <p>We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs) family (c-IAP1, c-IAP2, XIAP) and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p-) AKT, p-ribosomal protein S6 (S6) and p-4E-binding protein 1 (4EBP1) expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity.</p> <p>Results</p> <p>Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (<it>p </it>< 0.001). In contrast, the expression levels of Bowenoid papulosis indicated that c-IAP1, c-IAP2 and XIAP mRNA were significantly upregulated compared to those in both condyloma acuminatum samples (<it>p </it>< 0.001, <it>p </it>< 0.001, <it>p </it>= 0.022, respectively) and normal skin (<it>p </it>< 0.001, <it>p </it>= 0.002, <it>p </it>= 0.034, respectively). Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression.</p> <p>Conclusion</p> <p>Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors.</p

    Manipulation of Signaling Thresholds in “Engineered Stem Cell Niches” Identifies Design Criteria for Pluripotent Stem Cell Screens

    Get PDF
    In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (µCP) to investigate how niche size controls endogenous signaling thresholds. µCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 µm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 µm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control

    Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans

    Get PDF
    Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.ope
    corecore